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Fermat numbers

Fermat

Let n be an integer exceeding one.

The n-th Fermat number is 22n + 1.
For example:

222
+ 1 = 17.

223
+ 1 = 257.

224
+ 1 = 65537.

225
+ 1 = 4294967297.

226
+ 1 = 18446744073709551617.

227
+ 1 = 340282366920938463463374607431768211457.
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Factorization of Fermat numbers

Goldbach Lenstra

Fermat numbers are so large, that it is a mathematical and computational challenge to find
their factors.

Currently, only 222
+ 1, ..., 2211

+ 1 are fully factored.

For example, 225
+ 1 = 641 · 6700417.

Finding a new factor of some Fermat number is big news. At the present time, only 370
factors of Fermat numbers are known.

Theorem (Goldbach): Fermat numbers are pairwise coprime (in other words, Fermat
numbers do not share factors with each other).

The main procedure to find factors of Fermat numbers is Lenstra’s Elliptic Curve Method.
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The problem for my doctoral thesis

Euler
Lucas

Theorem (Euler & Lucas): the factors of the n-th Fermat number have the form m2n+2 +1.

For example, 641 = 5 · 25+2 + 1 | 225
+ 1.

So let m be an integer exceeding one.

Main problem: when does m2n+2 + 1 factor the n-th Fermat number?

In order to tackle this problem, it is essential to analyze concrete proofs of divisibility (e.g.
proofs of the fact that 5 · 25+2 + 1 | 225

+ 1 or 1071 · 26+2 + 1 | 226
+ 1).
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A sufficient condition

Baaz
Kraïtchik

Theorem (Baaz): a sufficient condition for the main problem is

m2n+2 + 1 = m2r + 22n−2r(n+2)

for some non-negative integer r .

This result was obtained by applying Baaz’s generalization method, a new technique on
extractive proof theory, to a proof by Kraïtchik of the fact that 5 · 25+2 + 1 factors 225

+ 1.
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A necessary condition

Observation: 10712·4 + 226−2·4·(6+2) = 107123
+ 1.

The dyadic valuation of a given number, which is denoted by ν2, is the exponent of two in
its prime factorization.

For example, ν2(12) = ν2(22 · 3) = 2.

Theorem (with Wang): a necessary condition for the main problem is

m2n+2 + 1 |
(
m2j−1

)2n−ν2(n+2)

+ 1

for any positive integer j .

For example, 5 · 27 + 1 factors (52j−1)2
5
+ 1 for any positive integer j .

We have more related results in preparation (some ones are already proved and other ones
are yet conjectural), and we are trying to unify them in a single general statement.
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Another necessary condition

Theorem (with Wang): a necessary condition for the main problem,
provided that m2n+2 + 1 is prime, is

(bc − ad)2 = 1
c2 + d2 = m2n+2 + 1
c2 + d2 = 22n − (ac + bd)2

for some integers a, b, c, d .

For example, 
(1 · 25 − 6 · 4)2 = 1
252 + 42 = 5 · 25+2 + 1
252 + 42 = 225 − (6 · 25 + 1 · 4)2

.

This result was obtained by applying Baaz’s generalization method to a proof of the fact
that 1071 · 26+2 + 1 factors 226

+ 1, due to the participant of the Mersenne Forum whose
nickname was Literka.
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A first result of geometric nature

Brînzănescu
Harcos

The special linear group, which is denoted by SL(2,Z), is the group of square matrices of
order two, integer entries and determinant one.

Observation (Brînzănescu): the first condition from the previous theorem resembles the
definition of the special linear group.

A Gaussian integer is a complex number whose real and imaginary parts are both integers.

Theorem (with Harcos): a prime p divides m2 + 1 if and only if
there exist Gaussian integers u and v such that vv = p | m2 −ℜ(uv)2 and[

ℑ(u) ℜ(u)
−ℑ(v) ℜ(v)

]
∈ SL(2,Z).
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A more general sufficient condition

Bennett

Theorem: a sufficient condition for the main problem is

m2n+2 + 1 | m2r + 22n−2r(n+2)

for some non-negative integer r .

This result was obtained by applying Baaz’s generalization method to another proof of the
fact that 5 · 25+2 + 1 factors 225

+ 1, due to Bennet & Kraïtchik.
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The concept of cover

Observation: the pairs of exponents from Baaz’s result (2r , 2n − 2r(n + 2)) are collinear,
see for example {(2r , 2n − 2r(n + 2))}4

r=0.

The cover of two integers a and b exceeding one, which is denoted by C(a, b), is the set{
(x , y) ∈ Q2

≥0 :
ax + by

ab + 1
∈ Z

}
.
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A conjecture on covers

A (bi-dimensional) point-lattice is a set of the form ⟨u⃗, v⃗⟩Z (i.e. of the form
{i u⃗ + j v⃗ : i , j ∈ Z}), where (u⃗, v⃗) is a Q-basis of the vector space Q2.

Conjecture: every cover is the first quadrant of a shifted point-lattice.

For example, take a look to this subset of C(116503103764643, 27+2).
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Some partial answers for the conjecture on covers

Schoof
Sarkar

Tichy

Thanks to an anonymous referee, we knew that covers were infinite as long as they were
non-empty.
Euler’s totient function, which is denoted by φ, gives the number of smaller positive
integers that are coprime with a given positive integer.
For example, φ(8) = 4 because the smaller positive integers that are coprime with 8 are 1, 3,
5 and 7.
Theorem (Schoof): if a and b are any two integers exceeding one, then([

1
−1

]
+

〈[
−2

2

]
,

[
φ(ab + 1)

0

]〉
Z

)
∩ Q2

≥0 ⊆ C(a, b).

In particular, Schoof’s result shows that covers are non-empty.
Another interesting (but more technical) partial answer was obtained by Sarkar.
Tichy posed several concrete questions on Schoof’s lattice whose resolution might approach
us to the proof of the conjecture.
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A geometric characterization

Theorem: a necessary and sufficient condition for the main problem is

Q2
≥0 ∩

([
1

−1

]
+

〈[
−2

2

]
,

[
2 ⌊α(n)⌋ − 1

2α(n)− 2 ⌊α(n)⌋+ 1

]〉
Z

)
⊆ C(m, 2n+2)

where α(n) = 2n−1/(n + 2).

For example, Q2
≥0 ∩

([
1

−1

]
+

〈[
−2

2

]
,

[
3

11/7

]〉
Z

)
⊆ C(5, 27).

In particular, (0, 32/7) ∈ C(5, 27); i.e.
(5)0 + (27)32/7

5 · 27 + 1
=

225
+ 1

5 · 27 + 1
∈ Z.
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Multidimensional analogies

Observation: for other numbers of dimensions there are also interesting patterns:

for example, a subset of
{
(x , y , z) ∈ Q3

≥0 :
2x + 3y + 5z

2 · 3 · 5 + 1
∈ Z

}
looks as follows.
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A connection with another theory

Parisse
Pillai

Observation (Parisse): the definition of cover resembles the Pillai equation
(i.e. the Diophantine equation ax − by = c).

And indeed, we have for instance that{
(x , y) ∈ Q2

≥0 :
2x − 3y

2 · 3 + 1
∈ Z

}
= Q2

≥0 ∩
([

1
2

]
+

〈[
1
2

]
,

[
−2

2

]〉
Z

)
.

In particular,
211 − 34

2 · 3 + 1
= 281 and

[
11
4

]
=

[
1
2

]
+ 4

[
1
2

]
− 3

[
−2

2

]
.
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Towards a general statement

Problem: given a point A of Zn
>1, when does a set of the form{

P ∈ Qn
≥0 :

±AP1
1 ± AP2

2 ± . . .± APn
n

A1A2 . . .An ± 1
∈ Z

}
,

where the ‘±’ signs are independent, equal the first orthant of some shifted point-lattice?
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