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CENTRAL HYPERPLANE SECTIONS OF THE CUBE

o Qn= [— %, %]n: the n-dimensional cube
e Q,N H, where H is a hyperplane: cube section
e Q,N H with 0 € H: central section

o V,(v) = Vol,_1(Q, Nv1): the section volume function (we will
assume v € S"°1)

Question: for which v € $" 1 is V,(v) minimal or maximal?



CENTRAL SECTIONS IN 3 DIMENSIONS
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MINIMAL SECTIONS

o Conjecture (Anton Good, 1970's): minimum when H is parallel to a
facet, i.e. v =¢;

o First proved by Hadwiger (1972)

o Also proved by Hensley (1979): alternative proof for minimal
sections, and first nontrivial upper bound, using probabilistic
methods

o Also proved by Vaaler (1979) — for lower dimensional sections as
well: minimal k-dimensional sections are parallel to k-dimensional
faces
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MAXIMAL SECTIONS

@ Question: which are the maximal sections?
o D. Hensley (1979) — universal upper bound: V,(v) <5

@ he also conjectured that the maximum is attained at
1
vV = 75(1,170,70)

o K. Ball (1986) proved this: for every v € S" 1,

Va(v) < V2.

Thus, for every direction vector v € S"1,
1 < Vol,_1(Q, Nvt) = V,(v) < V2.

(The cube is surprisingly fat in every direction.)

R e ————



COUNTEREXAMPLE TO THE BUSEMANN-PETTY
CONJECTURE

Characterization of maximal central sections also implies that the
cube-ball pair is a counterexample to the Busemann-Petty conjecture
when n > 10.
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CALCULATION OF THE VOLUME OF CUBE SECTIONS

o Laplace (1812): formula for volume of sections orthogonal to main
diagonal

o Pdlya (1913): formula for general central hyperplane sections: for
any unit vector v € S"7 1,

1 [~
Vi(v) = ;/ Hsinc vitdt,
% =1

where .
SNX i x 2£0,
X

1 if x=0.

sinc x 1=
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\ 5\
Q2
'
e Xi,..., X, iid uniform r.v. on [—1,1]
o (Xi,...,X,) is uniformly distributed on Q,
° 27:1 v

X; ~ (v,q) where q is a uniform point in the cube

% i V,'X,' S E)
i=1

= Vol,(q € Qu: [(g,v)| <e)
~ 2 - Vol,_1(Q, Nvr) = 2¢ - V,(v)

4e - f27:1 ViXi(O) ~ ]P’(

V”(V) = QfZ,":l ViXi(O)

ey
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PROBABILISTIC APPROACH

e X continuous random variable with density function fx(.)
@ characteristic function of X is @x(.):

px(t) = E[e™]

o If X is uniform on [—1,1]:

@ Inversion formula:
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FOURIER INVERSION

Let Xi,...,X, beiid. uniform on [~1,1] and v = (vq,...,v,) € S"~1

n
oy uxi(t) = H sinc v;t
i—1

which is real. Thus, by Fourier inversion,

1 [~ L
fsn uxi(r) = 5 / H sinc v;t - cos rt dt
=1

hence

1 oo I
f27:1 Vfo(O) = % / H sinc v;tdt
i=1

oo i
thus

1 [
MAV):::,/ IIshu;wtdt
T J_co paie]
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IS
DIAGONAL SECTIONS

o Main diagonal direction of a k-dimensional face:

1
dox = —(1,...,1,0,...,0
K \/Z( )

k-diagonal section: orthogonal to d «
Question: how do central diagonal sections compare to each other?
Note that V,(d, ) depends only on k when n > k:

Vi = Vn(dn,k)~

o for every v e §" 1,
1 < Vi(v) < ws.

o Hensley: (1979) Central Limit Theorem implies that

lim v, = \/§ ~ 1.3819
k—o0 e

e ————



VOLUME OF MAIN DIAGONAL SECTIONS

1.36} o
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VOLUME OF DIAGONAL SECTIONS

vn /°° n
=~ tdt =2v/nfsn x.(0
v ) sinc Vnfsn x.(0)
Monotonicity: Bartha, Fodor, Gonzélez Merino (IMRN, 2021): for n > 3,

Vp < Vpgi-

Question: Is {v,} concave for n > 57 Is it log-concave?

Distribution of Y7 | X;: Irwin-Hall distribution
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CRITICAL SECTIONS

Extremal sections are diagonal.

Question: are all critical sections diagonal?
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THE LAPLACE-POLYA INTEGRAL

Introduce 1 e
In(r) == — / sinc "t - cos(rt) dt.
T J o

Then 1
J,,(O) = ﬁlln

(volume of central diagonal sections), and
J,,(r) = 2f27:1 X,.(r)

(volume of off-diagonal sections)
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FORMULAE FOR J,(r)

Asymptotic formula:

6 3 13 27 1
5O =y 75 (1 T 200 1120 ' 320003 © O(F))'

Exact calculation:

L5)

W) = 30— n—1)| Z () ntr— 20y

Recursion: Thompson (1966)

n+r n—r
Jn(r) = m J,,_l(r — 1)

Jn—l(r + 1) + m
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EULERIAN NUMBERS

Eulerian numbers of the first kind: A(m, [) is the number of such
permutations of {1,..., m} for which there are exactly / elements which
are greater than the previous element (i.e. the permutation has / ascents)

A(m, ) = i(—l)’(m N 1) (I — i)™

. I
i=1

L5 ]
_ 1 i(n _ pyn—1
J,,(r) = m : (71) <i>(n+r 2/)
i=0
Thus, if n+ r is even,
1 n—+r
Jn(r)f(n_ )!A<nfl 5 >
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—
DIFFERENT INTERPRETATIONS OF J,(0)
o By the Laplace-Pdlya integral:

1 o0
Jn(0) := —/ sinc "t dt.

— 00

@ Volume of central diagonal section of the cube:

1

Jn(O) = %

@ Peak of the Irwin-Hall density:

Ja(0) = 2f5 x.(0)

o Eulerian number: if nis even, then

Jn(0) = ﬁA(n —1, g)

e ————
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IS
CONNECTIONS TO MAIN DIAGONAL SECTIONS

@ Recall:

vn = v/nJn(0)

e Monotonicity: v, < v,.1 for n > 3 is equivalent to

Vi _ Jna(0)
vn+1 ~ Jx(0)

o Log-concavity: the sequence {v,} is log-concave for n > 3 iff

Jn_1(0)J,,+1(0) < n
5LO2 T Vo1

o Critical sections: in order to prove that there exist critical sections
which are non-diagonal, it suffices to show that

Jn+2(0) n+2
<
Jn(O) n—+ 3

ey
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RATE OF DECREASE
Lesieur and Nicolas (1992) proved fine estimates for Eulerian numbers
using asymptotic expansion and technically involved calculations: if n is

even, then
n Jn+2(0) n+1

nrl s Jn(0) Shr2

THEOREM (A., GARGYAN '24+)

For every n > 3,
n Jn+2(0) n+2

n+1 Jn(0) n+3’

095 PR A
s 8!
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Due to the recursive equation property

n—+r n—r
J,,(r) = mJ,,_l(r + 1) + mJ,,_l(r — 1)

one can show that

Jn2(0) _ (n+2)* Jy(2) n+2
J,(0)  2n(n+1) J,(0)  2(n+1)

Hence, it suffices to estimate j%

Strategy: extend estimate to all =1 <r <n—2:

7 < Jn(r +2) <
= Ja(r)
For r = —1 Jj(a;) =1forr=n-2 JnJ(n”(i)z) =0



ESTIMATES ON THE RATE OF DECAY OF THE
LAPLACE-POLYA INTEGRAL

THEOREM (A., GARGYAN '24+)

Let n > 4 and r be integers satisfying —1 < r < n—2. Then

Cn.r < M < dn rs
sh— Jn(r) — )
where
o (n—r)?>  (4n—T7r —8)(4n+3r +6)
" (n+r+2)2  (4n+T7r+6)(4n—3r)
and

d = (n=r) .(n—r)2—2
" (n+r42) (ndr+2)2

ey
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The proofs are entirely combinatorial, based on the recursive formula

n—+r n—r
Jn(r) = mJn—l(r +1)+ 2(n— 1)Jn—l(f —1).
COROLLARY
Foreverym>2/—1and2<[/<m,
/3
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EXISTENCE OF NON-DIAGONAL CRITICAL SECTIONS
OF THE CUBE

Using the characterization of critical sections (Ambrus, Proc. AMS '22):

Ambrus, Gargyan, Adv. Math '24:

THEOREM

For every n > 4 there exists a non-diagonal critical central section of Q,
whose normal vector is of the form v = (a,a, b, ..., b) € R" with
a,b>0,a#b.
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IS
SOME OPEN QUESTIONS

@ The found non-diagonal critical point is a saddle point — Question:
are all locally extremal sections diagonal?

o Combinatorial proof for monotonicity of central diagonal sections
o Concavity and log-concavity of central diagonal sections

o Lower dimensional sections, other convex bodies, projections, etc.
etc.






