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Topics to be discussed:

´ Minimal coverings of non-separable arrangements of 
convex bodies (resp., spherical caps) in Euclidean 
spaces (resp., spherical spaces)

´ Dense totally separable packings of convex bodies
(resp., congruent spherical caps)

´ Contact numbers for locally separable sphere packings
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Part I – Minimal Coverings 
of Non-Separable Arrangements 

Pat I/A – Non-separable arrangements in Euclidean spaces
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Part I/B – Non-separable arrangements in spherical spaces
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´ Finding the maximum density of TS-packings

by congruent copies of a centrally symmetric convex domain 

Part II – Dense Totally Separable Packings
Part II/A – Results in 2D
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´ Minimizing the convex hull of TS-packings by n>1 translates of a convex domain 
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´ An analogue of Oler's inequality for translative TS-packings
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´ The separable Tammes problem
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Figure 1: An octahedral TS-packing in S2. Figure 2: A cuboctahedral TS-packing in S2.

Definition 4. Let L1 and L2 be two great circles on S2 orthogonally intersecting at the points ±p. Let S1,
S2, S3 be three spherical caps of radius ⇢ <

⇡

4 , each touching both L1 and L2 such that the touching points
are closer to p than �p. Let T denote the spherical convex hull of the centers of S1, S2 and S3. Then we
set

�(⇢) :=
Sarea(

S3
i=1(Si \ T ))

Sarea(T )
=

1� cos ⇢

1� ⇡

4 arcsin
⇣

1p
2 cos ⇢

⌘
.

Theorem 2.

(i) Let Fm = {S1, S2, . . . , Sm} be a TS-packing of spherical caps of radius ⇢ <
⇡

4 on S2. Then �(Fm)  �(⇢)

and therefore rSTam(k, S2)  arccos 1p
2 sin( k

k�2
⇡
4 )

for all k � 5. In particular, rSTam(8, S2) = arccos
q

2
3

= arcsin 1p
3
(⇡ 35.26�).

(ii) For any su�ciently large value of m, we have rSTam(m, S2) � 0.793p
m

, or equivalently, there is a TS-

packing Fm of m congruent spherical caps with �(Fm) � m
1�cos 0.793p

m

2 , where limm!+1 m
1�cos 0.793p

m

2 =
0.7932

4 ⇡ 0.16 <
⇡

4 ⇡ 0.79.

We note that an elementary computation, using L’Hospital’s Rule, yields that �(⇢) is strictly decreasing
over (0, ⇡

4 ) with lim⇢!0+ �(⇢) = ⇡

4 (Figure 3). Recall that a packing P of disks is called a totally separable
packing in short, a TS-packing in the Euclidean plane E2 if any two disks of P can be separated by a line
of E2 such that it is disjoint from the interior of each disk in P. As the proof of Theorem 2 extends to the
so-called (2R⇢)-separable packings of spherical caps of radius ⇢ (see the relevant discussion at the beginning
of the proof of Theorem 2), therefore a standard limiting process combined with central projection implies
the following theorem of G. Fejes Tóth and L. Fejes Tóth [16]. It states that the largest density of totally
separable packings of congruent disks in E2 is ⇡

4 . Thus, Theorem 2 yields

Corollary 1. The density of any TS-packing of at least three congruent spherical caps in S2 is always strictly
less than ⇡

4 , where
⇡

4 is the largest density of TS-packings of congruent disks in E2.

Corollary 2. As rSTam(12, S2))  arccos 1p
2 sin( 12

10
⇡
4 )

⇡ 29.07� and rSTam(10, S2))  arccos 1p
2 sin( 10

8
⇡
4 )

⇡

31.74�, therefore the maximum number of spherical caps of angular radius ⇡

6 that form a TS-packing in S2,
is at most 10.

The problem of finding the largest number of spherical caps of angular radius ⇡

6 that form a TS-packing
in S2, can be rephrased as follows.

3

S2 connecting a and b by cab. In other words, cab is the shorter circular arc with endpoints a and b of the
great circle ab that passes through a and b. The length of cab is called the spherical distance between a and
b and it is labelled by l(cab), where 0 < l(cab) < ⇡. If a,b 2 S2 are antipodes, then we set l(cab) = ⇡. Let
x 2 S2 and r 2 (0, ⇡

2 ]. Then the set C[x, r] := {y 2 S2 | l(cxy)  r} = {y 2 S2 | hy,xi � cos r} is called the
(closed) spherical cap, centered at x having angular radius r in S2. C[x, ⇡

2 ] is called a (closed) hemisphere.
A packing of spherical caps in S2 is a family of spherical caps having pairwise disjoint interiors.

1.1 On the densest TS-packings by congruent spherical caps in S2

The following definition is a natural extension to S2 of the Euclidean analogue notion, which was introduced
by G. Fejes Tóth and L. Fejes Tóth [16] and has attracted significant attention.

Definition 1. A family of spherical caps of S2 is called a totally separable packing in short, a TS-packing
if any two spherical caps can be separated by a great circle of S2 which is disjoint from the interior of each
spherical cap in the packing.

Now, we raise the immediate analogue of the Tammes problem for TS-packings as follows.

Problem 1. (Separable Tammes Problem) For given k > 1 find the largest r > 0 such that there exists
a TS-packing of k spherical caps with angular radius r in S2. Let us denote this r by rSTam(k, S2).
Remark 1. Let P be a TS-packing of an odd number of spherical caps of angular radius r in S2. Then
there exists a family C of great circles of minimal cardinality such that any two caps of P can be separated
by a great circle of C without intersecting the interior of any spherical cap of P. Hence, the great circles
of C dissect S2 into an even number of 2-dimensional cells forming an o-symmetric tiling such that each
cap of P is contained in exactly one cell and no two caps of P belong to the same cell. As P is a packing
of an odd number of caps therefore, one can always add an additonal cap of angular radius r to P and
thereby obtain a TS-packing of even number of caps. Thus, it follows that for any integer k

0
> 1, we have

rSTam(2k0 � 1, S2) = rSTam(2k0, S2).
Consider three mutually orthogonal great circles on S2. These divide the sphere into eight regular

spherical triangles of side lengths ⇡

2 . The family of inscribed spherical caps of these triangles is a TS-packing
of eight spherical caps of radius arcsin 1p

3
(⇡ 35.26�). We call such a family an octahedral TS-packing

(Figure 1). Similarly, the side lines of a regular spherical triangle of side length arccos 1
4 ⇡ 75.52� divide the

sphere into two regular spherical triangles of side length arccos 1
4 , and six isosceles spherical triangles of side

lengths ⇡�arccos 1
4 ,⇡�arccos 1

4 and arccos 1
4 . The inscribed spherical caps of the six isosceles triangles form

a TS-packing of six spherical caps of radius arctan 3
4 ⇡ 36.87�, which we call a cuboctahedral TS-packing

(Figure 2).
We leave the easy proofs of rSTam(2, S2) = ⇡

2 (= 90�) and rSTam(3, S2) = rSTam(4, S2) = ⇡

4 (= 45�) to the
reader. Here we solve Problem 1 for k = 5, 6, 7, 8 moreover, bound rSTam(k, S2) for k > 8 as follows.

Definition 2. Let k > 1 be fixed. A TS-packing of k spherical caps of radius rSTam(k, S2) is called k-optimal.

Theorem 1. For 5  k  6 we have rSTam(k, S2) = arctan 3
4 , and any k-optimal TS-packing is a subfamily

of a cuboctahedral TS-packing. Furthermore, for 7  k  8 we have rSTam(k, S2) = arcsin 1p
3
, and any

k-optimal TS-packing is a subfamily of an octahedral TS-packing.1

Definition 3. Let Fm = {S1, S2, . . . , Sm} be a TS-packing of spherical caps of radius ⇢ <
⇡

4 on S2. The
density �(Fm) of Fm is defined as

�(Fm) :=
Sarea(

S
m

i=1 Si)

Sarea(S2) =
2m⇡(1� cos ⇢)

4⇡
=

1� cos ⇢

2
m,

where Sarea(·) refers to the spherical area (i.e., spherical Lebesgue measure) in S2.
1
After completing this manuscript, G. Fejes Tóth has informed us that in 1981 in a seminar talk of K. Böröczky the problem

of finding rSTam(k, S2) for k  12 was raised and investigated. Unfortunately, that talk has not been published. Furthermore,

we thank G. Fejes Tóth for sending us the article [39] of É. Vásárhelyi that proves Part (ii) of Theorem 5.
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After completing this manuscript, G. Fejes Tóth has informed us that in 1981 in a seminar talk of K. Böröczky the problem
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´ Dense TS-packings by unit balls in 3D

Part II/B – Results in dimensions >2 



2024-06-26K. Bezdek: From Non-Separable Arrangements To Separable Packings

32



2024-06-26K. Bezdek: From Non-Separable Arrangements To Separable Packings

33

´ Minimal !-separable packings
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Part III – Contact Numbers for Locally Separable Sphere Packings
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´ Bounding the contact numbers of LS-packings of unit diameter disks
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´ Bounding the contact numbers of LS-packings of unit balls in high dimensions
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Remarks:
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