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Topics to be discussed:

= Minimal coverings of non-separable arrangements of
convex bodies (resp., spherical caps) in Euclidean
spaces (resp., spherical spaces)

Dense totally separable packings of convex bodies
(resp., congruent spherical caps)

» Contact numbers for locally separable sphere packings
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Pat I/A - Non-separable arrangements in Euclidean spaces
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[GG45] A. W. Goodman and R. E. Goodman, A ¢ircle covering theorem, Amer. Math. Monthly 52 (1945),
494-498. MR13513
Wi

W

2.1. Non-separable arrangements in Euclidean spaces. The following theorem was
conjectured by Erdés and proved by Goodman and Goodman in [GG45].

Theorem 2.1. Let the disks B[xy, 1] C E2, ... B[x,,T,] C E? have the following property:
No line of E? divides the disks B[xy,71], ..., B[Xpn, Ta] into two non-empty families without
touching or intersecting at least one disk. Then the disks B[xy, 7], ..., B[xn, 7] can be

covered by a disk of radius T ==Y | T;.
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[Had47] H. Hadwiger, Nonseparable convez systems, Amer. Math. Monthly 54 (1947), 583-585.
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Recall that a convex domain of E? is a compact convex set with non-empty interior.
Hadwiger [Had47] extended Theorem 2.1 by introducing the concept of non-separable system
as follows: A system of convex domains K; C E?, i = 1,...,n is called separable if there is
a line of E2, which is disjoint from each K; and which divides E? into two open half planes
each containing at least one K;. In the opposite case we call the system non-separable.

Projections on lines and Cauchy’s perimeter formula combined with Theorem 2.1 yield the
following inequalities.

Theorem 2.3. Let K;, i = 1,...,n be a non-separable system of convexr domains in E*. If
Ky := conv (U ;K;) and per (K;) ,diam (K;), and cr (K;) denote the perimeter, the diame-
ter, and the circumradius, respectively, of the convexr domain K;, i =0,1,...,n, then

(2) per(Kp) < Zper (K;),diam (Kjy) < Zdiam (K;), and cr (Kg) < Zcr (K;).
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On Non-separable Families of Positive Homothetic

Convex Bodies

Kiroly Bezdek!2() - Zsolt Langi®

Definition 1 Let K be a convex body in R? and let C={x; + ;K | x; e R¢, 7; > 0,
i =1,2,...,n},whered > 2 and n > 2. Assume that K is a non-separable family in
short, an NS-family, meaning that every hyperplane intersecting conv(|_J K) intersects
a member of K in RY, i.e., there is no hyperplane disjoint from |J KC that strictly
separates some elements of X from all the other elements of K in R4, Then, let
A(K) > 0 denote the smallest positive value A such that a translate of A(Q_7_; 7;)K
covers | J K.




Conjecture 1 (Goodman-Goodman [5]) For every convex body K in R? and every
NS-family K = {x; + ;K | x; e R4, 1; > 0,i = 1,2, ..., n} the inequality A.(K) < 1
holds for alld > 2 andn > 2.

Counterexample to Conjecture 1 for card(/C) > 3 in R, d>2

/\

Fig. 1 A counterexample in the
plane for three triangles

Fig. 2 A counterexample in the
plane for n triangles

Example 1 Place three regular triangles 7 = {T, T2, T3} of unit side lengths into a
regular triangle T of side length 2 + % = 3.154700... > 3 such that

e cach side of T contains a side of T;, fori = 1, 2, 3, respectively (cf. Fig. 1),
e fori = 1,2, 3, the vertices of T; contained in a side of T divide this side into three .y

segments of leng ths J- 1, and 1 3 + f in counter-clockwise order.




Remark 2 letd > 2, and let Af denote the supremum of A(K’), where K runs over
the NS-families of finitely many positive homothetic d-simplices in R¢. Then A¢ is a
non-decreasing sequence of d.

Fig. 3 A counterexample in R3
for three tetrahedra

Figure 3 shows how to extend the configuration in Example 1 to R3, implying that
M 235254 755 =10515... > Iforalld > 3.

=
\\/

Remark 3 In fact, ).g = supy- A(K) for alld > 2, where K runs over the NS-families
of finitely many positive homothetic copies of an arbitrary convex body K in R¢.



i

Proof Clearly, _ So, it is sufficient to show that for every convex body
K in R4 and every NS-family K {x,+r,K|x,eRd i >0,i=1,2,...,n}
a translate of A¢(3°"_, 7;)K covers | J K. Now, according to —
THEGEEM (6] if K; and K> are convex bodies in R? such that every circumscribed
simplex of K> has a translate that covers K1, then K3 has a translate that covers Kj.

(Here a circumscribed simplex of K, means a d-simplex of R? that contains K such
that each facet of the d-simplex meets K>.) Thus, if A(K) is a circumscribed sim-
plex of K, then A¢(3°"_, ;) A(K) is a circumscribed simplex of A4(>""_, 7;)K and
X; + 7; A(K) 1s a circumscribed simplex of x; + ;K forall7 = 1, 2, ..., n. Further-
more, {X; + T A(K) | x; € R ;>0,i=1,2,..., n}1s an NS-family and therefore
Af .7, t)A(K) has a translate that covers |J{x; + 7 A(K) | x; € R 7; > 0,
i = 1,2,...,n} 2 |JK. which completes our proof via Lutwak’s containment
theorem. O
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A Proof of Conjecture 1 for Centrally Symmetric Convex Bodies in
Re, d>2

1

Theorem 4 For every o-symmetric convex body Ky and every NS-family
K=1{xi+7tKo | xi e R, >~ 0,i = 1,2,...,n} the inequality A(K) < 1
holds for alld > 2 and n > 2.
H\ /
Remark 5 1f the positive homothetic convex bodies of K = {x; + 7Kg | x; € R¢,
7, > 0,1 = 1,2,...,n} have pairwise disjoint interiors with their centers {x; | i =
[,2,...,n}lying on aline L in R? such that the consecutive elements of X along L
touch each other, then K is an NS-family with A(X) = 1.
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Lemma3 Let F ={[xi—1,xi+71]|t>0,i=1,2,...,n}beafamily of closed
intervals in R such that | ) F is single closed interval in R. Let x = i1 X e

-1
the interval [x — >0, ti,x + >, ti] covers | J F.

|

Proof of Theorem 4 Letx = 2z T%i ,and set K’ = x + (37", 7;)Ko. We prove that

-1
K’ covers | J K.

For any line L through the origin o, let proj, : RY — L denote the orthogonal
projection onto L, and let ixc : SY~! — R and hg : SY~! — R denote the support
functions of conv(| J £) and K, respectively. Then proj; (| J K) is a single interval,
which, by Lemma 3, is covered by proj; (K’). Thus, for any u € S~!, we have that
hx (u) < hgs(u), which readily implies that | J £ C K. O
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I Upper Bounding A(K) in R, d > 2
Theorem 3 If X = {x; + i K | xX; € R 1; > 0,i = 1,2,...,n} is an arbitrary
NS-family of positive homothetic copies of the convex body K in R4, then

AMK) <d

holds for alln > 2 andd > 2.

Problem 1 Find supy A(K) for any given d > 2, where K runs over the NS-families
of finitely many positive homothetic copies of an arbitrary convex body K in RY. In
particular, is there an absolute constant ¢ > 0 such that supy L(K) < ¢ holds for all
d>2?

The results of this paper imply that % + % = 1.0515... < supicA(K) < d
for all d > 2.

Problem 2 Let K be a convex body inR?. If F is an NS-family of k positive homothetic
copies of K, with homothety ratios 11, 13, . . ., T, respectively, and with k > 4 , then
prove or disprove that there is a translate of (% - %)(Zf;l 7;)K containing F.



A Proof of Conjecture 1 for k-Impassable Families in R? Whenever
O0<k=<d-=-2

Definition2 Let K = {x; + K | x; e R4, 7; > 0,i = 1,2,...,n} be a family
of positive homothetic copies of the convex body K in R? and let 0 <k <d — 1.
We say that K 1s a k-impassable arrangement, in short, a k-IP-family if every
k-dimensional affine subspace of R4 intersecting conv(| J K) intersects an element
of K. Let A¢(K) > 0 denote the smallest positive value A such that some translate
of (3", ti)K covers | K, where K is k-IP-family. A (d — 1)-IP-family is simply
called an NS-family and in that case A4—1(K) = A(K).

 / /

Theorem S Let K be a d-dimensional convex body and K = {K; = x; + ;K |
x; e R 1; > 0,i = 1,2,...,n)} be a k-IP family of positive homothetic copies of
K in R4, where 0 < k < d — 2. Then conv \J K slides freely in (Z?zl 7i)K (ie.,
conv |J K is a summand of (3 7_, 7i)K ) and therefore 1, (K) < 1.

1 \\
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On the Circle Covering Theorem by A.W. Goodman
and R.E. Goodman
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Theorem 3.1 Let K be a family of positive homothetic copies of a simplex K ¢ R?
with homothety coefficients 1y, ..., ty > 0. Suppose any hyperplane H (parallel to
a facet of K) intersecting conv | J K intersects a member of K. Then it is possible

to cover | JK by a translate of %(Z t,-)K . Moreover, the factor % cannot be
improved.
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Let K ¢ R? be a (not necessarily centrally-symmetric) convex body containing the
originandlet K° = {p : (p,q) < | forall ¢ € K} (where (-, -) stands for the standard
inner product) be its polar body. We define the following parameter of asymmetry:

o= min min{pg >0:(K —-¢q) C —u(K —q)}.
geint K

Lemma 2.2 (H. Minkowski and J. Radon) Ler K be a convex body in RY. Theno < d,
where o denotes the parameter of asymmetry of K, defined above.

/

Theorem 2.1 Given a non-separable family of positive homothetic copies of (not
necessarily centrally-symmetric) convex body K C RY with homothety coefficients

T1, ..., Tp > 0, it is always possible to cover them by a translate of "TH( > r,f)K :
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Part I/B - Non-separable arrangements in spherical spaces

CoMBINATORICA 41 (5) (2021) 695-702
COMBlNATORICA DOI: 10.1007/s00493-021-4554-1
Bolyai Society — Springer-Verlag

A CAP COVERING THEOREM

ALEXANDR POLYANSKIT*

2.2. Non-separable arrangements in spherical spaces. In order to state the main re-
sults of this section we need to recall some definitions. A (closed) cap of spherical radius o,
1.e., a (closed) spherical ball of radius «a, for 0 < a < 7, is the set of points with spherical
distance at most « from a given point in S¥!  E?. A great sphere of S¥! is an intersection
of S%! with a hyperplane of E¢ passing through the origin o € E¢. Following the terminol-
ogy of Polyanskii [Pol21], we say that a great sphere avoids a collection of caps in S if it
does not intersect any cap of the collection. Finally, we say that a finite collection of caps
1s non-separable if 1t does not have a great sphere that avoids the caps such that on both
sides of it there is at least one cap. Based on these concepts Polyanskii [Pol21] very recently
proved the following extension of Theorem 2.1 to spherical spaces.

I \\ K. Bezdek: From Non-Separable Arrangements To Separable Packings 2024-06-26



Theorem 2.8. Let F be a non-separable family of caps of spherical radii oy, . . ., ay in ST1,
d>2. Ifay+---+a, < 3, then F can be covered by a cap of radius a1 + - -- + oy, in Sa-1,

It is shown in [Pol21] that Theorem 2.8 is equivalent to the following theorem. Polyanskii’s
proof of Theorem 2.9 uses ideas from [Bal21], [Bal91], and [Ban51]. Recall that a (closed)
zone of width 2a with 0 < a < 5 1n S?-1 is the set of points with spherical distance at most

a from a given great sphere in S%!. Notice that a zone of width 2a with 0 < a < 5 1s not

spherically convex in S*!. However, the two connected components of the complement of
any such zone, are spherically convex open caps in S91.

Theorem 2.9. Let Z1 ¢ S* ', ... Z, c S d > 2 be zones of width 2a,. .. ,20a,, respec-
tively, such that oy +---+a,, < 5. If SN (UL Z;) has at most one pair of antipodal open
connected components, then | J;_, Z; can be covered by a zone of width 2ay + - - - + 2a,.
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According to [Pol21], Maxim Didid suggested to investigate the following more general
problem, which he phrased as a conjecture. In what follows, a spherically convex body say,
K of S¥! ¢ E? is the intersection of S ! with a d-dimensional closed convex cone of E4

different from E¢. The inradius of K is the spherical radius of the largest cap contained in
K.

Conjecture 1. Let Z1 c S*1,...,Z, Cc S* 1 d > 2 be zones of width 2B, ...,2B,, respec-
tively. If ST\ (U Z;) consists of 2m spherically convex open connected components with
inradii Yy, . . ., Yom, respectively, then 28y +...28, +v1+ -+ + Yom = 7.
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Remark 1. Bezdek and Schneider [BS10] proved that if a cap of spherical radius oo > 5

is covered by a finite family of spherically conver bodies in S* !, d > 2, then the sum of
the inradii of the spherically convex bodies in the family is at least a. Clearly, this theorem
implies Conjecture 1 for the case when By =---= 0, =0, i.e., Zy,...,7Z, are great spheres

of S4-1.

As Problem 7.3.5 of [Bez13] is still open, therefore we mention it here as well in connection
with Remark 1.

Problem 2. Prove or disprove that if a cap of spherical radius 0 < a < 3 1s covered by a
finite family of spherically convez bodies in S% ', d > 2, then the sum of the inradii of the
spherically convex bodies in the family is at least c.

Remark 2. Jiang and Polyanskii [JP17] proved that if a finite family of zones covers S*~1,
then the sum of the widths of the zones in the family is at least w. Ortega-Moreno [OM21]
has found another proof, which was simplified by Zhao [Zha22| (see also [GKP23]). Clearly,
this theorem implies Conjecture 1 for the case when vy = -+ = Yo, = 0, i.e., ST 1 = Uiy Z;.
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Part Il - Dense Totally Separable Packings
Part ll/A - Results in 2D

» Finding the maximum density of TS-packings

by congruent copies of a centrally symmetric convex domain

[FTFT73] G. Fejes Té6th and L. Fejes Téth, |On totally separable domains, Acta Math. Acad. Sci. Hungar. j
24 (1973), 229-232. MR322690

/

3.1. Results in the Euclidean (resp., spherical) plane. The concept of totally separa-
ble packings was introduced by Fejes T6th and Fejes Téth [FTFT73| as follows.

Definition 2. A packing F of convex domains in E? is called a totally separable packing,

in short, a T'S-packing, if any two members of F can be separated by a line which is disjoint
from the interiors of all members of F.

We shall use the following notation.

Definition 3. Let K be a conver domain in E2. Then let (0*(K) (resp., (K)) denote a

minimal area circumscribed quadrilateral (resp., parallelogram) of K.




Fejes T6th and Fejes Toth [FTFT73| put forward the problem of finding the largest density
of TS-packings by congruent copies of a given convex domain in E2. They have solved this
problem for centrally symmetric convex domains as follows.

Theorem 3.1. Let K be a conver domain in E? and let Q C E? be a convex quadrilateral

that contains n > 1 congruent copies of K forming a TS-packing in Q. Then area(Q) >
n - area([1*(K)).

According to a theorem of Dowker [Dow44] if K C E? is a centrally symmetric convex do-
main, then among the least area convex quadrilaterals containing K there 1s a parallelogram.
Clearly, this observation and Theorem 3.1 1mply

Corollary 3.2. Let K be a centrally symmetric convexr domain and let P be an arbitrary
T'S-packing by congruent copies of K. Then for the density 6(P) of P (i.e., for the fraction
§(P) of E? covered by the members of P) we have that 6(P) < %. Here, equality is
attained for the lattice T'S-packing of K with fundamental parallelogram [(K).
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I = Minimizing the convex hull of TS-packings by n>1 translates of a convex domain

Discrete & Computational Geometry (2020) 63:49-72
https://doi.org/10.1007/500454-018-0029-6

@ CrossMark

Bounds for Totally Separable Translative Packings in the
Plane

e
Karoly Bezdek!2( - Zsolt Langi?

[BL20] K. Bezdek and Z. Langi, Bounds for totally separable translative packings in the plane, Discrete
Comput. Geom. 63 (2020), no. 1, 49-72. MR4045741
/

The line of research started in [FTFT73| has been continued by the author and Léngi in
[BL20]. On the one hand, the following close relative of Corollary 3.2 was proved in [BL20].
/

Theorem 3.3. If i,.,(K) denotes the largest (upper) density of TS-packings by translates
of the conver domain K in E?, then

area(K)
3 dsen(K) = :

Remark 3. It is worth pointing out that by (3) of Theorem 3.3, the densest TS-packing by

translates of a convexr domain is attained by a lattice packing.




On the other hand, the following finite T'S-packing analogue of Theorem 3.3 was proved
by the author and Langi in [BL20].

Theorem 3.4. Let F = {c; + K :i=1,2,...,n} be a TS-packing by n translates of the
convex domain K in E%. Let C = conv{cy,Cs,...,C,}.

(3.4.1) Then we have

area (conv (LJ(Cz + K))) = area(C + K) >

i=1
(3.4.2) If K or C is centrally symmetric, then
area(C + K) > (n — 1)area (J(K)) + area(K).

| X K. Bezdek: From Non-Separable Arrangements To Separable Packings 2024-06-26

(n — 1)area ((K)) + area(K) + %area(C).

Qo Do



Remark 4. We note that equality is attained in (3.4.1) of Theorem 3.j for the following

T'S-packings by translates of a triangle (cf. Figure 3). Let K be a triangle, with the origin

0o at a verter, and u and v being the position vectors of the other two wvertices, and let

T = mK, where m > 1 is an integer. Let F be the family consisting of the elements

of the lattice packing {iu + jv + K : i,j,€ Z} contained in T. Then F is a TS-packing
m(m+1)

by n = =5 translates of K with conv (|JF) = T = C + K, where C = (m — 1)K.

Thus, area(T) = m2area(K) = [Zm(m + 1) — § + +(m — 1)?] area(K) = 3(n — 1)area(K) +

area(K) + zarea(C) = 2(n — 1)area((K)) + area(K) + area(C).

——

FIiGURrE 4. TS-packings by translates of a triangle and a unit disk for which
equality is attained in (3.4.2) in Theorem 3.4

in Figure 4 for both cases namely, when C is centrally symmetric (and K is not centrally

symmetric such as a triangle) and when K is centrally symmetric (such as a circular disk)
without any assumption on the symmetry of C.

| Remark 5. In (3.4.2) of Theorem 3./ equality can be attained in a variety of ways shown



I = An analogue of Oler's inequality for franslative TS-packings

The proofs of Theorems 3.3 and 3.4 in [BL20] are based on a translative TS-packing
analogue of Oler’s inequality [Ole61]. As it might be of independent interest, we state it as
follows Flrst we recall the nec&sa.ry deﬁmtlons

If K is an o-symmetfric convex domain in E=, then let |- |k denote the norm generated by
!, ie., let |x|K = Imn{)\ X € /\K} for any x € E2. The distance between the pomts p and
q of lE measured in the norm | - |k is denoted by |p — q|x. For the sake of simplicity, the
Euclidean distance between the pomts p and q of E? is denoted by |[p — q|.

If P= s a polveonal curve in E with [x;—1,x;] standing for the closed
line segment connectlng Xi-1 , and x,, a.nd K 1S an o-symmetrlc convex domain in E2, then

Minkc th of P is defined as Mg(P) = >, o |xi —xi—1|k. Based on thls and
using apprommatlon by polygona.l curves one can define the Minkowski length Mk(G) of

any rectifiable curve G C E? in the norm | - |k.
aF_ where X = X, [is]called
polygonal curves P* = |J;-[xI 1,x7],
P is defined as

Deﬁmtlon 4. A closed pc l curve
‘missible if there is a sequence of szmple clos

where xo = X, satisfying X' — Xx; for every value of i. The interior intF

him,,_, ., Int P™.
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One of the main results of [BL20] is the following translative TS-packing analogue of Oler’s
inequality [Ole61].

Theorem 3.6. Let K be an o-symmetric convex domain in E?. Let
F={x;+K:i=1,2...,n}

be a TS-packing by n translates of K in E2?, and set X = {X1,Xa,...,X,}. Furthermore, let
IT be a permissible closed polygonal curve with the following properties:
(1) the vertices of I are points of X

and
(2) X CII* with T* = T U intII.
Then
area(IT*) M (11)
1 1> n.
4) area (OK)) 4 ="

FIGURE 5. A TS-packing of translates of K (with K being a circular disk for
the sake of simplicity), which satisfies the conditions in Theorem 3.6 and for
which there is equality in (4) of Theorem 3.6.



As an application of Theorem 3.6, we outline the proof of (3.4.2) of Theorem 3.4 for
centrally symmetric K following [BL20]. It goes as follows. Note that bdC satisfies the
conditions in Theorem 3.6, and thus, we have

area(C) My (bdC)
+
area (J(K)) 4

Next, recall the following inequality from [BL20].

Lemma 3.7. Let K be a convexr domain in E? and let Q be a convez polygon. Furthermore,
let A(Q,K) denote the mized area of Q and K. If K is centrally symmetric, then

8A(Q,K)
area ([J(K))
Thus, Lemma 3.7 yields that
area(C) N 2A(C,K) 1> n
area ((J(K)) area(d(K)) -

+1>n.

> Mg (bdQ).

From this, 1t follows that

area (conv (LﬂJ(c1 - K))) = area(C + K) = area(C) + 2A(C,K) + area(K) >

i=1
(n — 1)area (J(K)) + area(K),
finishing the proof of (3.4.2) of Theorem 3.4 for centrally symmetric K.



I » The separable Tammes problem
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Definition 5. A family of spherical caps of S? is called a totally separable packing in short,
a MS-packing if any two spherical caps can be separated by a great circle of S° which is
disjoint from the interior of each spherical cap in the packing.

The analogue of the Tammes problem for T'S-packings, called the separable Tammes prob-
lem, was raised in [BL22].

Problem 4. For given k > 1 find the largest r > 0 such that there exists a T'S-packing of k
spherical caps with angular radius v in S®. Let us denote this v by Fsram(k; S%)-

Remark 8. It was noted in [BL22] that remam(2k" — 1,S?) = roram(2k’,S?) holds for any %
integer k' > 1.



The following T'S-packings are special solutions of the separable Tammes problem ([BL22]).
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On the one hand, it is easy to check that rgp.m(2,S?) = 3(= 90°) and rsTam (3, S2) =
Tstam(4,S?) = Z(= 45°). On the other hand, Problem 4 is solved for k = 5,6, 7,8 in [BL22].

Definition 6. Let k > 1 be fired. A TS-packing of k spherical caps of radius rmam(k,S?) is
called k-optimal.

Theorem 3.8. For 5 < k < 6 we have rgpam(k,S?) = arctan %, and any k-optimal TS-
packing is a subfamily of a cuboctahedral TS-packing. Furthermore, for 7 < k < 8 we
have rs1am(k,S?) = arcsin ﬁ , and any k-optimal T'S-packing is a subfamily of an octahedral
T'S-packing.

The value of rg1am(k, S?) is not known for any k& > 8, which leads to

Problem 5. Compute the exact value of rstam(k,S?) for some small integers k > 8.
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On the other hand, the author and Langi [BL22] lower and upper bounded rgrum(k,S?)
for any (sufficiently large value of) k as follows.

Theorem 3.9.
(i) rsTam(k,S?) < arccos

\/_sm( £3) for all k > 5. In particular, rsram(8,S?) =

arccos \/g — arcsin 7%(% 35.26°).
(i) For any sufficiently large value of k, we have rspam(k,S?) > %

Notice that the upper bound on rgrum(k,S?) stated in Part (i) is about /T ~ 1\332 as
k — +oo, which 1s of the same order of magnitude as the order of magnitude of the lower
bound given in Part (ii).

Problem 6. Does the limit m;._, Vk - TSTam (k,S?) exist?
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Part lI/B - Results in dimensions >2

» Dense TS-packings by unit balls in 3D

Acta Math. Hung.
51 (3—4) (1988), 363—364.

ON TOTALLY SEPARABLE PACKINGS OF EQUAL
BALLS

G. KERTESZ (Budapest)

3.2. Results in dimensions > 2. It 1s natural to extend the concept of T'S-packings dis-
cussed 1 Definition 2 to higher dimensions as follows.

Definition 7. A packing F of conver bodies in E¢, d > 2 is called a totally separable
packing, in short, a TS-packing, if any two members of F can be separated by a hyperplane
of B¢ which is disjoint from the interiors of all members of F.

An elegant paper of Kertész [Ker88| shows that the (upper) density of any TS-packing of
unit diameter balls in E? is at most & With equality for the lattice packing of unit diameter
balls having integer coordinates. Actually, Kertész [Ker88| proved the following stronger
result: If a cube of volume V > 0 in E? contains a TS-packing of N > 1 balls or radius
r > 0, then V > 8N#3. In fact, it is not hard to see that Kertész’s method of proof from
[Ker88] implies the following even stronger result.



Theorem 3.10. If a cube of volume V > 0 in E? is partitioned into N > 1 convez cells by
N-1 successive plane cuts (just one cell being divided by each cut) such that each convex cell
contains a ball of radius r > 0, then the sum of the surface areas of the N convex cells is at

least 24N1? and therefore V > % (24N7?) = 8Nr3.
It would be very interesting to find analogues of Theorem 3.10 in higher dimensions.

Problem 7. Prove or disprove that if a d-dimensional cube of volume V > 0 in E?, d > 3
is partitioned into N > 1 convex cells by N — 1 successive hyperplane cuts (just one cell
being divided by each cut) such that each convex cell contains a ball of radius r > 0, then

V > 2¢Nre,
Remark 9. A positive answer to Problem 7 would imply that the (upper) density of any

Kd

TS-packing of unit diameter balls in E?, d > 3 is at most 51 with equality for the lattice
packing of unit diameter balls having integer coordinates in E?.
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= Minimal p-separable packings

Monatsh Math (2019) 188:611-620 (!) CrossMark
https://doi.org/10.1007/s00605-018-1166-y

Monatshefte

fir Mathematik

Vokume (71« Mumbens 14 < 3013

Minimizing the mean projections of finite p-separable
packings

£ speimpet

\l ¢ Kiroly Bezdek!? - Zsolt Langi®

/

Next, recall the following elegant theorem of Boroezky Jr. [Bor94]: Consider the convex
hull Q of n non-overlapping translates of an arbitrary convex body C in E? with n being
sufficiently large. If Q has minimal mean i-dimensional projection for given 7 with 1 < i < d,
then Q is approximately a d-dimensional ball. The author and Langi [BL19] proved an
extension of this theorem to the so-called p-separable translative packings of convex bodies
in EZ. In short, one can regard p-separable packings (for p > 3) as packings that are locally
totally separable. In what follows, we define the concept of p-separable translative packings
using [BL19] and then state the main result of [BL19].

| |\



Definition 8. Let C be an o-symmetric convex body of E¢. Furthermore, let || - ||c denote
the norm generated by C, i.e., let ||x||c := inf{)\ | x € AC} for any x € E¢. Now, let p > 1.
We say that the packing

Psep :={ci+C | i€l with |[c; —ci|]|c =2 forall j #k € I}
of (finitely or infinitely many) non-overlapping translates of C with centers {c; | i € I} is a
p-separable packing in E? if for each i € I the finite packing {c; + C | ¢; + C C ¢; + pC}
is a TS-packing (in c; + pC). Finally, let dsep(p, C) denote the largest upper density of all
p-separable translative packings of C in E?, i.e., let
( > e rcowd vola(c; + C))

5
1m sup Vol (W)

A—+o00

Osep(p, C) 1= iup

where W¢ denotes the d-dimensional cube of edge length 2\ centered at o in E? having edges

parallel to the coordinate axes of EX.
Recall that the mean i-dimensional projection M;(C) (i = 1,2,...,d — 1) of the convex
body C in E?, can be expressed ([Sch14]) with the help of a mixed volume via the formula

d—i
r———

Ki ’_z_\ d d
M;(C)=—V(C,...,C,B ..., BY),
Kd

where k4 is the volume of B? in E¢. Note that M,-(Bd) = K4, and the surface volume of C
1s svolg_1(C) = zf_‘i M,_1(C) and in particular, svoly_1(B?) = dk4. Set My(C) := volg(C).
Finally, let R(C) (resp., 7(C)) denote the circumradius (resp., inradius) of the convex body
C in E¢, which is the radius of the smallest (resp., a largest) ball that contains (resp., is

contained in) C. The following is the main result of [BL19].




[
Theorem 3.11. Letd > 2,1 <i<d—1, p>1, and let Q be the convex hull of a p-separable

packing of n translates of the o-symmetric convex body C in E? such that M;(Q) is minimal
d
and n > 6sep%dd(;;d . (p%(g)l) . Then
5 (Q ,  _w
17{(0) B

2

for w = A(d) (—(—l)m, where A(d) depends only on the dimension d. In addition,

(C)
M;(Q) = (1 i ni) M:(B) (55;?2(8))@)%

_ 2.95R(C)pdi 2.1R(C)pi
where — &5 05 S 0 S 565 p0)

Remark 11. [t is worth restating Theorem 3.11 as follows: Consider the convex hull Q of n
non-overlapping translates of an arbitrary o-symmetric convexr body C forming a p-separable
packing in B with n being sufficiently large. If Q has minimal mean i-dimensional projection
for given i with 1 <1 < d, then Q is approximately a d-dimensional ball.

[l \\

A=

N >




Problem 8. Letd > 2,1 < i < d—1, and let C be an o-symmetric conver body in E°.
Does the analogue of Theorem 3.11 hold for translative TS-packings of C in E4?

Remark 12. The nature of the question analogue to Theorem 3.11 on minimizing Ma(Q) =
vola(Q) is very different. Namely, recall that Betke and Henk [BHO98| proved L. Fejes Toth’s

sausage conjecture for d > 42 according to which the smallest volume of the convex hull of n
non-overlapping unit balls in E? is obtained when the n unit balls form a sausage, that is, a

linear packing. As linear packings of unit balls are p-separable, therefore the above theorem of
Betke and Henk applies to p-separable packings of unit balls in E? for all p > 1 and d > 42.

1\ Z

We close this section with the following conjecture, which has already been proved for

d = 2 (see (3.4.2) of Theorem 3.4) as well as for all d > 42 (see Remark 12).

Conjecture 2. The volume of the convex hull of an arbitrary TS-packing of N > 1 unit
balls in E? with 3 < d < 41 is at least as large as the volume of the convexr hull of N

non-overlapping unit balls with their centers lying on a line segment of length 2(N-1).

| \
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Part lll - Contact Numbers for Locally Separable Sphere Packings

ON CONTACT NUMBERS OF LOCALLY SEPARABLE
UNIT SPHERE PACKINGS Mathematika

Mathematika 67 (2021) 714-729  doi:10.1112/mtk.12102
KAROLY BEZDEK

Definition 9. The contact graph G(P) lof @ packing P of conver bodies in E?, d > 1 is

the simple graph whose vertices correspond to the members of the packing, and whose two
vertices are connected by an edge if the two members touch each other. The number of edges

of G(P) is called the contact number ¢(P) of P.
The concept of locally separable (sphere) packing was introduced in [Bez21].

Definition 10. We call the packing P of convex bodies in E?, d > 1 a locally separable
packing, in short, an LS-packing if each member of P together with the members of P that

are tangent to it form a TS-packing.

Clearly, any TS-packing is also an LS-packing, but not necessarily the other way around.
Moreover, it i1s worth noting that any p-separable packing by translates of a convex body ¢
for p = 3 1s a translative LS-packing and vice versa.

K. Bezdek: From Non-Separable Arrangements To Separable Packings
Figure 1 (colour online): An LS-packing of unit disks which is not a TS-packing.
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Bounding the contact numbers of LS-packings of unit diameter disks
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Theorem 4.1. Let P* be an arbitrary LS-packing of n > 1 unit diameter disks in E2. Then
c(P*) < |2n — 2+4/n].

Futhermore, suppose that P is an LS-packing of n unit diameter disks with c¢(P) = |2n —
2/n|, n > 4 in E2. Let G.(P) denote the contact graph of P embedded in E? such that
the vertices are the center points of the unit diameter disks of P and the edges are line
segments of unit length each connecting two center points if and only if the unit diameter
disks centered at those two points touch each other. Then either G.(P) is the contact graph
of the LS-packing of T unit diameter disks shown in Figure 8 or

(i) G.(P) is 2-connected whose internal faces (i.e., faces different from its external face)
form an edge-to-edge connected family of unit squares called a polyomino of an isometric
copy of the integer lattice Z? in E? (see the first packing in Figure 8) or

(ii) Gc(P) is 2-connected whose internal faces are unit squares forming a polyomino of an
isometric copy of the integer lattice Z? in E? with the exception of one internal face which is
a pentagon adjacent along (at least) three consecutive sides to the external face of G.(P) and
along (at most) two consecutive sides to the polyomino (see the second packing in Figure 9)
or

(iii) G.(P) possesses a degree one vertex on the boundary of its external face such that
deleting that vertex together with the edge adjacent to it yields a 2-connected graph whose
internal faces are unit squares forming a polyomino of an isometric copy of the integer lattice
Z? in E? (see the first packing in Figure 9).



I ® Bounding the contact numbers of LS-packings of unit balls in high dimensions

In higher dimensions we know much less. At present the best upper bound for contact
numbers of LS-packings of congruent balls in EZ, d > 3 is the one published in [Bez21]. We
shall need the following notation. Let P := {B%[c;, 1]|i € I} be an arbitrary (finite or infinite)
packing of unit balls in E¢, d > 3 and let V; := {x € E¢| ||x — c;|| < ||x — ¢;j]| for all j #
i,j € I} denote the Voronoi cell assigned to B%[c;, 1] for i € I. Recall ([Rog64]) that the
Voronoi cells {V;|i € I} form a face-to-face tiling of E?. Then let the largest density of the

unit ball Bé[c;, 1] in its truncated Voronoi cell V; N B?[c;, v/d] be denoted by 54, ie., let

04 = supp (sup,-el == (thé‘ . \/3])>’ where P runs through all possible unit ball packings
of E¢. We are now ready to state the upper bound from [Bez21].
Theorem 4.3. Let P be an arbitrary LS-packing of n > 1 unit balls in B¢, d > 3. Then

c(P) < [dn - (d_%(i;%) nd%lJ :
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Let P := {B9[c;, 1]|i € I} be an arbitrary packing of unit balls in E?, d > 1 with V; standing
for the Voronoi cell assigned to B%[c;, 1] fori € I. Furthermore, take a regular d-dimensional
et simplex of edge length 2 in E? and then draw a d-dimensional unit ball around each vertez of
the simplex. Finally, let o4 denote the ratio of the volume of the portion of the simplex covered

by balls to the volume of the simplex. Then e (V,nB“;Tc,, ‘/ = ) < o4 holds for all 1 € I and

therefore 64 < 04 for all d > 3. The latter inequality and (6) yield that if P is an arbitrary
A_d—1 _
LS-packing of n > 1 unit balls in B¢, d > 3, then ¢(P) < {dn— (d—#dg d )ndTlJ <

{dn — (d_%a‘;%> n%J , where og ~ 52‘%‘1 ([Rog58] ).
Remark 15. The density upper bound o3 of Rogers has been improved by Hales [Hall2] as
follows: If P := {B3®[c;,1]|i € I} is an arbitrary packing of unit balls in E* and V; denotes

Remarks: Remark 13. Recall the following classical result of Rogers [Rogh8] (which was rediscovered
by Baranovskii [Bar64] and extended to spherical and hyperbolic spaces by Béréczky [Bor78] ):
/

the Voronoi cell assigned to B%[c;, 1], i € I, then v (v n“l’;'s[c %) < Sopy < 0.7547 < 03 =

0.7797..., where D stands for a reqular dodacahedron of inradius 1. Hence, 53 < 0.7547. The
latter inequality and (6) yield that if P is an arbitrary LS-packing of n > 1 unit balls in E?,

then ¢(P) < |30 — 83_%71%J < [3n — 1.206n% |.



Remark 16. Let P := {Bd[ci,%ﬂci € Z% 1 < i < n} be an arbitrary packing of n unit
diameter balls with centers having integer coordinates in E¢. Clearly, P is a TS-packing.

Then let cza(n) denote the largest c(P) for packings P of n unit diameter balls of E? obtained
in this way. It is proved in [BSS16] that

(7) dN? — AN < cga(n) < {dn — dn%J

for N € Z satisfying 0 < N < ni < N+1, whered > 1 andn > 1. Note that if N = ni € Z,
then the lower and upper estimates of (7) are equal to cza(n). Furthermore,

(8) cz2(n) = [2n — 2v/n|

for all n > 1. We note that [Nev95] (resp., [AC96]) generates an algorithm that lists some

(resp., all) packings P = {B[c;, %Hci € Z4,1 < i < n} with ¢(P) = cga(n) for d > 4 (resp.,
d=2,3)andn > 1.

[BSS16] K. Bezdek, B. Szalkai, and I. Szalkai, On contact numbers of totally separable unit sphere packings,
Discrete Math. 339 (2016), no. 2, 668-676. MR3431379

[Nev95] E. J. Neves, A discrete variational problem related to Ising droplets at low temperatures, J. Statist.
Phys. 80 (1995), no. 1-2, 103-123. MR1340555

[AC96] L. Alonso and R. Cerf, The three-dimensional polydmz'noés of minimal area, Electron. J. Combin.
3 (1996), no. 1, Research Paper 27, approx. 39. MR1410882

Problem 9. Let P be an arbitrary LS-packing (resp., TS-packing) of n > 1 unit diameter
balls in E%, d > 3. Then prove or disprove that c(P) < cza(n).



