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The Vector Balancing Problem

Given:
» Symmetric convex bodies
K,Q C RY
» Associated Minkowski norms 0y
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» Vectors vq,...,v, € K
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Discrepancy Theory
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For A € {0,1}" we recover the
combinatorial discrepancy
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Kernel Density Estimation

Definition

Let p be a probability distribution on D, {Xi,..., Xp} ~ pi.id.,
and £ : D x D — R. The Kernel Density Estimator (KDE) given
by K is then

1 n
KDEx(y) = > K(Xi, ).
i—1
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Kernel Density Estimation

Definition

Let p be a probability distribution on D, {Xi,..., Xp} ~ pi.id.,
and £ : D x D — R. The Kernel Density Estimator (KDE) given
by K is then

1 n
KDEx(y) = = S K(X;, y).
x(y) =~ Zl (Xi.y)
Example: Gaussian kernel, Kg(x, y) = exp(—a?||x — y||3)

» Well-known that KDEx(y) approximates p at the minimax
optimal rate as |X| — oo for "well-behaved” kernels
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Kernel Density Estimation

N
o referenceM
S~ 101 \
o h— .
-~ ™ — 0.05 A )
g o7
T N_ | !
n o
—
S - I
o
0-_1_I_I_|_LLI.ULHII‘LIIIM.IHMHIMJIUUUI|LMIU_M_IJ_I_F

I
w
I
N
I
|
o
=
N
w

Vector Balancing and Kernel Density Estimation



Coresets for KDEs

Definition (e-Coreset)

Given e > 0, K: D xD — R, and a data set X C D, an e-coreset
for K is a subset @ C X such that

|KDEx —KDEg||oo = sup ‘X‘ Z K(x,y) — al Z K(g,y)| <e.
qeq
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Coresets for KDEs

Definition (e-Coreset)
Given e > 0, K: D xD — R, and a data set X C D, an e-coreset
for K is a subset @ C X such that

|KDEx —KDEg||oo = sup ‘X‘ Z K(x,y) — al Z K(g,y)| <e.
qeq

» The coreset complexity of a kernel function K is the minimum
size coreset given any choice of X C D

» Bounds depend on K and the dimension d of the data, and
are independent of the size and choice of X.
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Fix a kernel £ : D x D — [—1,1] and data set X C D.

Vector Balancing and Kernel Density Estimation



Kernel Discrepancy

Fix a kernel £ : D x D — [—1,1] and data set X C D. Assume
that |D| = d < o0, |X| = n (think d > n).

Vector Balancing and Kernel Density Estimation



Kernel Discrepancy
Fix a kernel £ : D x D — [—1,1] and data set X C D. Assume
that |D| = d < o0, |X| = n (think d > n).

K € RI*". Kij = K(yi, xj); columns K* € RY indexed by X
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Kernel Discrepancy

Fix a kernel £ : D x D — [—1,1] and data set X C D. Assume
that |D| = d < o0, |X| = n (think d > n).

K € RI*". Kij = K(yi, xj); columns K* € RY indexed by X

Suppose we can find balanced signs ¢ € {£1}" so that

ZsXKX

xeX

= sup ‘ > ek (i x ‘ < f(n, d).
ie[d] xeX
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The Halving Trick

We take S_ := {x: ex = —1} to be our coreset. For any y € D:
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The Halving Trick
We take S_ := {x: ex = —1} to be our coreset. For any y € D:

[KDEx(y) = KDEs_(y)| = |y 3" K(x.y) = 5 D K(x.y)

xeX xeS5_
1
= W ZK(Xay)_z Z K(va)‘
xeX x€eS_
1
= W Z K(Xay)_ Z K(X’y)‘
x€Sy xeS_
1
= W Zi‘?xK(X,)/)‘
xeX
< f(n,d)/n.
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The Halving Trick
We take S_ := {x: ex = —1} to be our coreset. For any y € D:

[KDEx(y) = KDEs_(y)| = |y 3" K(x.y) = 5 D K(x.y)

xeX xeS5_
1
= W ZK(Xay)_z Z K(X7y)‘
xeX x€eS_
1
= m Z K(Xay)_ Z K(X’y)‘
x€Sy xeS_
1
= W Zi‘?xK(X,)/)‘
xeX
< f(n,d)/n.

Hope: f(n, d) decays polynomially with n, get bound via
iteration.
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Our Problem

Goal: Given a kernel £ : D x D — [0,1], X C D, bound disc(K).

Vector Balancing and Kernel Density Estimation



Our Problem

Goal: Given a kernel £ : D x D — [0,1], X C D, bound disc(K).

> Phillips, 2013: disc(K) = O(n*/2=1/9, /log(n)) for Lipchitz,
rotation-and-shift invariant kerneIs O(1) ford =1

Vector Balancing and Kernel Density Estimation



Our Problem

Goal: Given a kernel £ : D x D — [0,1], X C D, bound disc(K).

> Phillips, 2013: disc(K) = O(n*/2=1/9, /log(n)) for Lipchitz,
rotation-and-shift invariant kerneIs O(1) ford =1

» Phillips and Tai, 2020: disc(K) = O(~/d log n) for positive
definite, Lipchitz, decaying kernels; Q(v/d) with added
assumption of rotation, shift invariance

Vector Balancing and Kernel Density Estimation



Our Problem

Goal: Given a kernel £ : D x D — [0,1], X C D, bound disc(K).

> Phillips, 2013: disc(K) = O(n*/2=1/9, /log(n)) for Lipchitz,
rotation-and-shift invariant kerneIs O(1) ford =1

» Phillips and Tai, 2020: disc(K) = O(~/d log n) for positive
definite, Lipchitz, decaying kernels; Q(v/d) with added
assumption of rotation, shift invariance

» Tai, 2022: disc(Kg) = O(1) for d constant

Vector Balancing and Kernel Density Estimation



Our Problem

Goal: Given a kernel £ : D x D — [0,1], X C D, bound disc(K).

> Phillips, 2013: disc(K) = O(n*/2=1/9, /log(n)) for Lipchitz,
rotation-and-shift invariant kerneIs O(1) ford =1

» Phillips and Tai, 2020: disc(K) = O(~/d log n) for positive
definite, Lipchitz, decaying kernels; Q(v/d) with added
assumption of rotation, shift invariance

» Tai, 2022: disc(Kg) = O(1) for d constant
And a related result...

> Karnin and Liberty, 2019: disc(K) = O(v/d) under very
strong assumptions on D
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data set X by dropping the discretization of D.
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Our Contributions

Broad Contribution: Ability to account for the geometry of the
data set X by dropping the discretization of D.

» disc(Kg),disc(K.) = O(y/dloglog n) for uniformly bounded
datasets X.

» disc(K.) = O(+/loglog n) for d constant.

> disc(K) = /d log(2 max{a, 1}) for the exponential, JS, and
Hellinger kernels

» Significantly improved dependence on bandwidth parameter «
for the exponential kernel
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Kernel Properties

For our purposes: the kernel K : D x D — [-1,1], with D C RY, is
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Kernel Properties

For our purposes: the kernel K : D x D — [-1,1], with D C RY, is
> Positive definite: Vxy, ..., x,, € D, the Gram matrix
Gjj = K(x;,x;) is positive definite.
» Normalized: Vx € D, K(x,x) = 1.

» (Generally) of the form K(x,y) = r(a||x — y||2),
k:RY x RY — [~1,1] strictly decreasing and continuous
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Kernel Properties

For our purposes: the kernel K : D x D — [-1,1], with D C RY, is
> Positive definite: Vxy, ..., x,, € D, the Gram matrix
Gjj = K(x;,x;) is positive definite.
» Normalized: Vx € D, K(x,x) = 1.

» (Generally) of the form K(x,y) = r(a||x — y||2),
k:RY x RY — [~1,1] strictly decreasing and continuous

Examples:
> Gaussian: Kg(x,y) = exp(—a?||x — y||3), x,y € R?
» Laplacian: K (x,y) = exp(—al|x — y|2), x,y € RY
> JS: Kis(x,y) = exp (— a(H(*E) — —H(X);H(y))), x,y € A9
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Key Theorem in Discrepancy Method

Theorem (Banaszczyk, '98)

Given any convex body K C R™ of Gaussian measure
Ym(K) > 1/2, and vector vy, ..., v, € Bg, there exist signs
£ € {£1}" such that 3,y ivi € CK, C > 0 an absolute
constant.
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Key Theorem in Discrepancy Method

Theorem (Banaszczyk, '98)

Given any convex body K C R™ of Gaussian measure
Ym(K) > 1/2, and vector vy, ..., v, € Bg, there exist signs
£ € {£1}" such that 3,y ivi € CK, C > 0 an absolute
constant.

Theorem (Dadush et.al., 2018)

There is a polynomial-time randomized algorithm that takes as
input vectors vy, ..., v, € R™ of {5 norm at most 1 and outputs
random signs ¢ € {£1}" such that the (mean-zero) random
variable } ;1 €ivi is O(1)-subgaussian.
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Reproducing Kernel Hilbert Spaces

Theorem (Moore-Aronszajn, 1950)

Let T be a set and K a positive definite function on T x T. Then

there is a map ¢ : T — Hy to a unique corresponding reproducing
kernel Hilbert space Hy so that for any s,t € T,

K(s, t) = (¢(s), (1)) -
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For fixed kernel K with associated RKHS map ¢ : D — H, take
the collection of vectors {¢p(x)})xex-
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Reproducing Kernel Hilbert Spaces

Theorem (Moore-Aronszajn, 1950)

Let T be a set and K a positive definite function on T x T. Then
there is a map ¢ : T — Hy to a unique corresponding reproducing
kernel Hilbert space Hy so that for any s,t € T,

K(s, t) = (¢(s), (1)) -

For fixed kernel K with associated RKHS map ¢ : D — H, take
the collection of vectors {¢p(x)})xex-

» Dadush et. al = 3Je € {£1}" such that > _y ex¢(x) is
O(1)-subgaussian.
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Our Approach
Restated Goal: bound

sup (£, 00| = s0p | 3 Klx.y)].
YeQ ' ex

where ¥ := 3\ ex¢(x) is O(1)-subgaussian.
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Our Approach
Restated Goal: bound

sup | (%, 6(0) | = sup | 3 K(x,v)|
yeQ yeQ xeX
where ¥ := 3\ ex¢(x) is O(1)-subgaussian.

Theorem (Dudley’s Integral Inequality)
Let (Xt)teT be a mean zero random process on a pseudometric
space (T, d) satisfying || X — Xs||y, < d(t,s) forall t,s € T. Then

diam(d)

Esup X; < V0og N(T,d,e) de.

teT 0
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Our Approach
Restated Goal: bound
sup | (%, 6(0) | = sup | 3 K(x,v)|
yeQ yeQ xeX
where ¥ := 3\ ex¢(x) is O(1)-subgaussian.
Theorem (Dudley’s Integral Inequality)

Let (Xt)teT be a mean zero random process on a pseudometric
space (T, d) satisfying || X — Xs||y, < d(t,s) forall t,s € T. Then

diam(d)

Esup X; < V0og N(T,d,e) de.

teT 0

Key Idea: Apply Dudley to X, := (X, #(y) for y € Q with d given
by || - |2, the kernel distance
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Future Ideas

Key Question: How can we account for the geometry of the data
in applications to get better bounds?
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Key Question: How can we account for the geometry of the data
in applications to get better bounds?

» In general, we expect the bandwidth parameter to depend on
n. If we account for this in our iteration, can we get better
bounds?
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Future Ideas

Key Question: How can we account for the geometry of the data
in applications to get better bounds?

» In general, we expect the bandwidth parameter to depend on
n. If we account for this in our iteration, can we get better
bounds?

» Can assumed properties of the distribution give us better
bounds?
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Thank You!

Questions? :)
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