Vector Balancing and Kernel Density Estimation

Rainie Bozzai

Joint Work with Thomas Rothvoss

June 12, 2024

[Vector Balancing and Kernel Density Estimation](#page-51-0)

Given:

▶ Symmetric convex bodies $\mathcal{K},\mathcal{Q}\subset\mathbb{R}^d$

Given:

- ▶ Symmetric convex bodies $\mathcal{K},\mathcal{Q}\subset\mathbb{R}^d$
- ▶ Associated Minkowski norms $\|\cdot\|_K, \|\cdot\|_Q$

Given:

- ▶ Symmetric convex bodies $\mathcal{K},\mathcal{Q}\subset\mathbb{R}^d$
- ▶ Associated Minkowski norms $\|\cdot\|_K, \|\cdot\|_Q$
- ▶ Vectors $v_1, ..., v_n \in K$

Given:

- ▶ Symmetric convex bodies $\mathcal{K},\mathcal{Q}\subset\mathbb{R}^d$
- ▶ Associated Minkowski norms $\|\cdot\|_{\mathcal{K}}, \|\cdot\|_{\mathcal{Q}}$

$$
\blacktriangleright \text{ Vectors } v_1, ..., v_n \in K
$$

Goal: find signs $\varepsilon \in {\pm 1}^n$ to minimize

$$
\Big\|\sum_{i\in[n]}\varepsilon_iv_i\Big\|_Q
$$

Given:

- ▶ Symmetric convex bodies $\mathcal{K},\mathcal{Q}\subset\mathbb{R}^d$
- ▶ Associated Minkowski norms $\|\cdot\|_{\mathcal{K}}, \|\cdot\|_{\mathcal{Q}}$

$$
\blacktriangleright \ \text{Vectors } v_1, ..., v_n \in K
$$

Goal: find signs $\varepsilon \in {\pm 1}^n$ to minimize

$$
\Big\|\sum_{i\in[n]}\varepsilon_iv_i\Big\|_Q
$$

Given:

- ▶ Symmetric convex bodies $\mathcal{K},\mathcal{Q}\subset\mathbb{R}^d$
- ▶ Associated Minkowski norms $\|\cdot\|_K, \|\cdot\|_Q$

$$
\blacktriangleright \text{ Vectors } v_1, ..., v_n \in K
$$

Goal: find signs
$$
\varepsilon \in \{\pm 1\}^n
$$
 to minimize

$$
\Big\|\sum_{i\in[n]}\varepsilon_iv_i\Big\|_Q
$$

$$
\operatorname{vb}(K,Q):=\sup\Big\{\min_{x\in\{\pm 1\}^n}\ \Big\|\sum_{i=1}^n x_iv_i\Big\|_Q: \ n\in\mathbb{N}, \ v_1,...,v_n\in K\Big\}
$$

$$
\operatorname{vb}(K,Q) := \sup \Big\{ \min_{x \in \{\pm 1\}^n} \ \Big\| \sum_{i=1}^n x_i v_i \Big\|_Q : \ n \in \mathbb{N}, \ v_1, ..., v_n \in K \Big\}
$$

Linear Algebraic Version: For $A \in \mathbb{R}^{d \times n}$, the *discrepancy* of A is

$$
\mathrm{disc}(A)=\min_{x\in\{\pm 1\}^n}\|Ax\|_{\infty}
$$

$$
\operatorname{vb}(K,Q) := \sup \Big\{ \min_{x \in \{\pm 1\}^n} \ \Big\| \sum_{i=1}^n x_i v_i \Big\|_Q : \ n \in \mathbb{N}, \ v_1, ..., v_n \in K \Big\}
$$

Linear Algebraic Version: For $A \in \mathbb{R}^{d \times n}$, the *discrepancy* of A is

$$
\mathrm{disc}(A)=\min_{x\in\{\pm 1\}^n}\|Ax\|_{\infty}
$$

Why discrepancy? For $A \in \{0,1\}^n$ we recover the combinatorial discrepancy problem.

$$
\text{vb}(K,Q) := \sup \Big\{ \min_{x \in \{\pm 1\}^n} \, \Big\| \sum_{i=1}^n x_i v_i \Big\|_Q : n \in \mathbb{N}, \, v_1, ..., v_n \in K \Big\}
$$

Linear Algebraic Version: For $A \in \mathbb{R}^{d \times n}$, the *discrepancy* of A is

$$
\mathrm{disc}(A)=\min_{x\in\{\pm 1\}^n}||Ax||_{\infty}
$$

Why discrepancy? For $A \in \{0,1\}^n$ we recover the combinatorial discrepancy problem.

Definition

Let ρ be a probability distribution on $\mathcal{D}, \{X_1, ..., X_n\} \sim \rho$ i.i.d., and $K: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$. The Kernel Density Estimator (KDE) given by K is then

$$
KDE_X(y) = \frac{1}{n}\sum_{i=1}^n K(X_i, y).
$$

Definition

Let ρ be a probability distribution on $\mathcal{D}, \{X_1, ..., X_n\} \sim \rho$ i.i.d., and $K: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$. The Kernel Density Estimator (KDE) given by K is then

$$
KDE_X(y) = \frac{1}{n}\sum_{i=1}^n K(X_i, y).
$$

Example: Gaussian kernel, $K_G(x, y) = \exp(-\alpha^2 ||x - y||_2^2)$

Definition

Let ρ be a probability distribution on $\mathcal{D}, \{X_1, ..., X_n\} \sim \rho$ i.i.d., and $K: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$. The Kernel Density Estimator (KDE) given by K is then

$$
KDE_X(y) = \frac{1}{n}\sum_{i=1}^n K(X_i, y).
$$

Example: Gaussian kernel, $K_G(x, y) = \exp(-\alpha^2 ||x - y||_2^2)$

 \triangleright Well-known that $KDE_X(y)$ approximates ρ at the minimax optimal rate as $|X| \to \infty$ for "well-behaved" kernels

Coresets for KDEs

Definition (ε-Coreset)

Given $\varepsilon > 0$, $K : \mathcal{D} \times \mathcal{D} \to \mathbb{R}$, and a data set $X \subseteq \mathcal{D}$, an ε -coreset for K is a subset $Q \subset X$ such that

$$
\|\text{KDE}_{X}-\text{KDE}_{Q}\|_{\infty}=\sup_{y\in\mathcal{D}}\left|\frac{1}{|X|}\sum_{x\in X}K(x,y)-\frac{1}{|Q|}\sum_{q\in Q}K(q,y)\right|\leq\varepsilon.
$$

Coresets for KDEs

Definition (ε-Coreset)

Given $\varepsilon > 0$, $K : \mathcal{D} \times \mathcal{D} \to \mathbb{R}$, and a data set $X \subseteq \mathcal{D}$, an ε -coreset for K is a subset $Q \subset X$ such that

$$
\|\mathrm{KDE}_{X}-\mathrm{KDE}_{Q}\|_{\infty}=\sup_{y\in\mathcal{D}}\left|\frac{1}{|X|}\sum_{x\in X}K(x,y)-\frac{1}{|Q|}\sum_{q\in Q}K(q,y)\right|\leq\varepsilon.
$$

 \blacktriangleright The coreset complexity of a kernel function K is the minimum size coreset given any choice of $X \subseteq \mathcal{D}$

Coresets for KDEs

Definition (ε-Coreset)

Given $\varepsilon > 0$, $K : \mathcal{D} \times \mathcal{D} \to \mathbb{R}$, and a data set $X \subseteq \mathcal{D}$, an ε -coreset for K is a subset $Q \subset X$ such that

$$
\|\mathrm{KDE}_{X}-\mathrm{KDE}_{Q}\|_{\infty}=\sup_{y\in\mathcal{D}}\left|\frac{1}{|X|}\sum_{x\in X}K(x,y)-\frac{1}{|Q|}\sum_{q\in Q}K(q,y)\right|\leq\varepsilon.
$$

- \blacktriangleright The coreset complexity of a kernel function K is the minimum size coreset given any choice of $X \subseteq \mathcal{D}$
- \triangleright Bounds depend on K and the dimension d of the data, and are independent of the size and choice of X .

Fix a kernel $K : \mathcal{D} \times \mathcal{D} \rightarrow [-1,1]$ and data set $X \subseteq \mathcal{D}$.

[Vector Balancing and Kernel Density Estimation](#page-0-0)

Fix a kernel $\mathcal{K} : \mathcal{D} \times \mathcal{D} \rightarrow [-1, 1]$ and data set $X \subseteq \mathcal{D}$. Assume that $|\mathcal{D}| = d < \infty$, $|X| = n$ (think $d \gg n$).

Fix a kernel $\mathcal{K} : \mathcal{D} \times \mathcal{D} \rightarrow [-1, 1]$ and data set $X \subseteq \mathcal{D}$. Assume that $|\mathcal{D}| = d < \infty$, $|X| = n$ (think $d \gg n$).

 $\mathcal{K} \in \mathbb{R}^{d \times n}, \quad \mathcal{K}_{ij} = \mathcal{K}(y_i, x_j);$ columns $\mathcal{K}^{\times} \in \mathbb{R}^{d}$ indexed by X

Fix a kernel $\mathcal{K} : \mathcal{D} \times \mathcal{D} \rightarrow [-1, 1]$ and data set $X \subseteq \mathcal{D}$. Assume that $|\mathcal{D}| = d < \infty$, $|X| = n$ (think $d \gg n$).

 $\mathcal{K} \in \mathbb{R}^{d \times n}, \quad \mathcal{K}_{ij} = \mathcal{K}(y_i, x_j);$ columns $\mathcal{K}^{\times} \in \mathbb{R}^{d}$ indexed by X

Suppose we can find **balanced** signs $\varepsilon \in \{\pm 1\}^n$ so that

$$
\left\|\sum_{x\in X}\varepsilon_x K^x\right\|_{\infty}=\sup_{i\in[d]}\left|\sum_{x\in X}\varepsilon_x K(y_i,x)\right|\leq f(n,d).
$$

The Halving Trick

We take $S_ - := \{x : \varepsilon_x = -1\}$ to be our coreset. For any $y \in \mathcal{D}$:

The Halving Trick
\nWe take
$$
S_{-} := \{x : \varepsilon_{x} = -1\}
$$
 to be our coset. For any $y \in \mathcal{D}$:
\n
$$
|\text{KDE}_{X}(y) - \text{KDE}_{S_{-}}(y)| = \left| \frac{1}{|X|} \sum_{x \in X} K(x, y) - \frac{1}{|X|/2} \sum_{x \in S_{-}} K(x, y) \right|
$$
\n
$$
= \frac{1}{|X|} \left| \sum_{x \in X} K(x, y) - 2 \sum_{x \in S_{-}} K(x, y) \right|
$$
\n
$$
= \frac{1}{|X|} \left| \sum_{x \in S_{+}} K(x, y) - \sum_{x \in S_{-}} K(x, y) \right|
$$
\n
$$
= \frac{1}{|X|} \left| \sum_{x \in X} \varepsilon_{x} K(x, y) \right|
$$
\n
$$
\leq f(n, d)/n.
$$

The Halving Trick
\nWe take
$$
S_{-} := \{x : \varepsilon_{x} = -1\}
$$
 to be our coset. For any $y \in \mathcal{D}$:
\n
$$
|\text{KDE}_{X}(y) - \text{KDE}_{S_{-}}(y)| = \left| \frac{1}{|X|} \sum_{x \in X} K(x, y) - \frac{1}{|X|/2} \sum_{x \in S_{-}} K(x, y) \right|
$$
\n
$$
= \frac{1}{|X|} \left| \sum_{x \in X} K(x, y) - 2 \sum_{x \in S_{-}} K(x, y) \right|
$$
\n
$$
= \frac{1}{|X|} \left| \sum_{x \in S_{+}} K(x, y) - \sum_{x \in S_{-}} K(x, y) \right|
$$
\n
$$
= \frac{1}{|X|} \left| \sum_{x \in X} \varepsilon_{x} K(x, y) \right|
$$
\n
$$
\leq f(n, d)/n.
$$

Hope: $f(n, d)$ decays polynomially with n, get bound via iteration.

[Vector Balancing and Kernel Density Estimation](#page-0-0)

Goal: Given a kernel $K : \mathcal{D} \times \mathcal{D} \rightarrow [0,1]$, $X \subseteq \mathcal{D}$, bound $\text{disc}(K)$.

Goal: Given a kernel $K : \mathcal{D} \times \mathcal{D} \rightarrow [0,1]$, $X \subseteq \mathcal{D}$, bound $\text{disc}(K)$.

▶ Phillips, 2013: disc(K) = $O(n^{1/2-1/d}\sqrt{\log(n)})$ for Lipchitz, rotation-and-shift invariant kernels; $\Theta(1)$ for $d=1$

Goal: Given a kernel $K : \mathcal{D} \times \mathcal{D} \rightarrow [0,1], X \subseteq \mathcal{D}$, bound $\text{disc}(K)$.

- ▶ Phillips, 2013: disc(K) = $O(n^{1/2-1/d}\sqrt{\log(n)})$ for Lipchitz, rotation-and-shift invariant kernels; $\Theta(1)$ for $d=1$
- ▶ Phillips and Tai, 2020: disc(K) = $O(\sqrt{\frac{1}{2}})$ d log n) for positive Phillips and Tai, 2020: $\text{disc}(N) = O(\sqrt{d} \log n)$ for pos
definite, Lipchitz, decaying kernels; $\Omega(\sqrt{d})$ with added assumption of rotation, shift invariance

Goal: Given a kernel $K : \mathcal{D} \times \mathcal{D} \rightarrow [0,1]$, $X \subseteq \mathcal{D}$, bound $\text{disc}(K)$.

- ▶ Phillips, 2013: disc(K) = $O(n^{1/2-1/d}\sqrt{\log(n)})$ for Lipchitz, rotation-and-shift invariant kernels; $\Theta(1)$ for $d=1$
- ▶ Phillips and Tai, 2020: disc(K) = $O(\sqrt{\frac{1}{2}})$ d log n) for positive Phillips and Tai, 2020: $\text{disc}(N) = O(\sqrt{d} \log n)$ for pos
definite, Lipchitz, decaying kernels; $\Omega(\sqrt{d})$ with added assumption of rotation, shift invariance
- \blacktriangleright Tai, 2022: disc(K_G) = O(1) for d constant

Goal: Given a kernel $K : \mathcal{D} \times \mathcal{D} \rightarrow [0,1]$, $X \subseteq \mathcal{D}$, bound $\text{disc}(K)$.

- ▶ Phillips, 2013: disc(K) = $O(n^{1/2-1/d}\sqrt{\log(n)})$ for Lipchitz, rotation-and-shift invariant kernels; $\Theta(1)$ for $d=1$
- ▶ Phillips and Tai, 2020: disc(K) = $O(\sqrt{\frac{1}{2}})$ d log n) for positive Phillips and Tai, 2020: $\text{disc}(N) = O(\sqrt{d} \log n)$ for pos
definite, Lipchitz, decaying kernels; $\Omega(\sqrt{d})$ with added assumption of rotation, shift invariance
- \blacktriangleright Tai, 2022: disc(K_G) = O(1) for d constant

And a related result...

▶ Karnin and Liberty, 2019: $\text{disc}(K) = O(\sqrt{k})$ d) under very strong assumptions on D

Broad Contribution: Ability to account for the geometry of the data set X by dropping the discretization of D .

Broad Contribution: Ability to account for the geometry of the data set X by dropping the discretization of D .

▶ disc(K_G), disc(K_L) = O($\sqrt{ }$ d log log n) for uniformly bounded datasets X.

Broad Contribution: Ability to account for the geometry of the data set X by dropping the discretization of D .

▶ disc(K_G), disc(K_L) = O($\sqrt{ }$ d log log n) for uniformly bounded datasets X.

 \blacktriangleright disc(K_L) = O($\sqrt{ }$ $\log \log n$) for d constant.

Broad Contribution: Ability to account for the geometry of the data set X by dropping the discretization of D .

▶ disc(K_G), disc(K_L) = O($\sqrt{ }$ d log log n) for uniformly bounded datasets X.

- \blacktriangleright disc(K_L) = O($\sqrt{ }$ $\log \log n$) for d constant.
- \blacktriangleright disc $(K) = \sqrt{d \log(2 \max\{\alpha, 1\})}$ for the exponential, JS, and Hellinger kernels

Broad Contribution: Ability to account for the geometry of the data set X by dropping the discretization of D .

▶ disc(K_G), disc(K_L) = O($\sqrt{ }$ d log log n) for uniformly bounded datasets X.

- \blacktriangleright disc(K_L) = O($\sqrt{ }$ $\log \log n$) for d constant.
- \blacktriangleright disc $(K) = \sqrt{d \log(2 \max\{\alpha, 1\})}$ for the exponential, JS, and Hellinger kernels
	- \blacktriangleright Significantly improved dependence on bandwidth parameter α for the exponential kernel

For our purposes: the kernel $\mathcal{K}: \mathcal{D} \times \mathcal{D} \rightarrow [-1,1],$ with $\mathcal{D} \subseteq \mathbb{R}^d$, is

For our purposes: the kernel $\mathcal{K}: \mathcal{D} \times \mathcal{D} \rightarrow [-1,1],$ with $\mathcal{D} \subseteq \mathbb{R}^d$, is

▶ Positive definite: $\forall x_1, ..., x_m \in \mathcal{D}$, the Gram matrix $G_{ij} = K(x_i, x_j)$ is positive definite.

For our purposes: the kernel $\mathcal{K}: \mathcal{D} \times \mathcal{D} \rightarrow [-1,1],$ with $\mathcal{D} \subseteq \mathbb{R}^d$, is

- ▶ Positive definite: $\forall x_1, ..., x_m \in \mathcal{D}$, the Gram matrix $G_{ij} = K(x_i, x_j)$ is positive definite.
- ▶ Normalized: $\forall x \in \mathcal{D}, K(x, x) = 1$.

For our purposes: the kernel $\mathcal{K}: \mathcal{D} \times \mathcal{D} \rightarrow [-1,1],$ with $\mathcal{D} \subseteq \mathbb{R}^d$, is

- ▶ Positive definite: $\forall x_1, ..., x_m \in \mathcal{D}$, the Gram matrix $G_{ij} = K(x_i, x_j)$ is positive definite.
- ▶ Normalized: $\forall x \in \mathcal{D}, K(x, x) = 1$.
- ▶ (Generally) of the form $K(x, y) = \kappa(\alpha ||x y||_2)$, $\kappa: \mathbb{R}^d \times \mathbb{R}^d \to [-1,1]$ strictly decreasing and continuous

For our purposes: the kernel $\mathcal{K}: \mathcal{D} \times \mathcal{D} \rightarrow [-1,1],$ with $\mathcal{D} \subseteq \mathbb{R}^d$, is

- ▶ Positive definite: $\forall x_1, ..., x_m \in \mathcal{D}$, the Gram matrix $G_{ij} = K(x_i, x_j)$ is positive definite.
- ▶ Normalized: $\forall x \in \mathcal{D}, K(x, x) = 1$.
- ▶ (Generally) of the form $K(x, y) = \kappa(\alpha ||x y||_2)$, $\kappa: \mathbb{R}^d \times \mathbb{R}^d \to [-1,1]$ strictly decreasing and continuous

Examples:

► Gaussian: $K_G(x, y) = \exp(-\alpha^2 ||x - y||_2^2)$, $x, y \in \mathbb{R}^d$ ▶ Laplacian: $K_L(x, y) = \exp(-\alpha ||x - y||_2)$, $x, y \in \mathbb{R}^d$

► Laplacian:
$$
R_L(x, y) = exp(-\alpha \left(H(\frac{x+y}{2}) - \frac{H(x)+H(y)}{2}) \right), x, y \in \Delta^d
$$

\n▶ JS: $K_{JS}(x, y) = exp(-\alpha \left(H(\frac{x+y}{2}) - \frac{H(x)+H(y)}{2}) \right), x, y \in \Delta^d$

Key Theorem in Discrepancy Method

Theorem (Banaszczyk, '98)

Given any convex body $K \subseteq \mathbb{R}^m$ of Gaussian measure $\gamma_m(K) \geq 1/2$, and vector $\mathsf{v}_1, ..., \mathsf{v}_n \in B_2^{\mathsf{d}}$, there exist signs $\varepsilon \in \{ \pm 1 \}^n$ such that $\sum_{i \in [n]} \varepsilon_i \mathsf{v}_i \in \mathsf{C} \mathsf{K}$, $\mathsf{C} > 0$ an absolute constant.

Key Theorem in Discrepancy Method

Theorem (Banaszczyk, '98)

Given any convex body $K \subseteq \mathbb{R}^m$ of Gaussian measure $\gamma_m(K) \geq 1/2$, and vector $\mathsf{v}_1, ..., \mathsf{v}_n \in B_2^{\mathsf{d}}$, there exist signs $\varepsilon \in \{ \pm 1 \}^n$ such that $\sum_{i \in [n]} \varepsilon_i \mathsf{v}_i \in \mathsf{C} \mathsf{K}$, $\mathsf{C} > 0$ an absolute constant.

Theorem (Dadush et.al., 2018)

There is a polynomial-time randomized algorithm that takes as input vectors $v_1, ..., v_n \in \mathbb{R}^m$ of ℓ_2 norm at most 1 and outputs random signs $\varepsilon \in \{\pm 1\}^n$ such that the (mean-zero) random variable $\sum_{i\in [n]} \varepsilon_i$ v $_i$ is $O(1)$ -subgaussian.

Reproducing Kernel Hilbert Spaces

Theorem (Moore-Aronszajn, 1950)

Let T be a set and K a positive definite function on $T \times T$. Then there is a map $\phi : \mathcal{T} \to \mathcal{H}_K$ to a unique corresponding reproducing kernel Hilbert space \mathcal{H}_K so that for any s, $t \in \mathcal{T}$,

 $\mathcal{K}(\pmb{s},t) = \langle \phi(\pmb{s}), \phi(t) \rangle_{\mathcal{H}_\mathcal{K}}.$

Reproducing Kernel Hilbert Spaces

Theorem (Moore-Aronszajn, 1950)

Let T be a set and K a positive definite function on $T \times T$. Then there is a map $\phi : \mathcal{T} \to \mathcal{H}_K$ to a unique corresponding reproducing kernel Hilbert space \mathcal{H}_K so that for any s, $t \in \mathcal{T}$,

$$
K(s,t)=\langle \phi(s),\phi(t)\rangle_{\mathcal{H}_K}.
$$

For fixed kernel K with associated RKHS map $\phi : \mathcal{D} \to \mathcal{H}_K$, take the collection of vectors $\{\phi(x)\}\}_{x \in X}$.

Reproducing Kernel Hilbert Spaces

Theorem (Moore-Aronszajn, 1950)

Let T be a set and K a positive definite function on $T \times T$. Then there is a map $\phi : \mathcal{T} \to \mathcal{H}_K$ to a unique corresponding reproducing kernel Hilbert space \mathcal{H}_K so that for any s, $t \in \mathcal{T}$,

$$
K(s,t)=\langle \phi(s),\phi(t)\rangle_{\mathcal{H}_K}.
$$

For fixed kernel K with associated RKHS map $\phi : \mathcal{D} \to \mathcal{H}_K$, take the collection of vectors $\{\phi(x)\}\}_{x\in X}$.

▶ Dadush et. al $\implies \exists \varepsilon \in {\pm 1}^n$ such that $\sum_{x \in X} \varepsilon_x \phi(x)$ is $O(1)$ -subgaussian.

Our Approach

Restated Goal: bound

$$
\sup_{y\in Q}|\langle\Sigma,\phi(y)\rangle_{\mathcal{H}_K}|=\sup_{y\in Q}\Big|\sum_{x\in X}K(x,y)\Big|,
$$

where $\Sigma := \sum_{\mathsf{x} \in \mathsf{X}} \varepsilon_{\mathsf{x}} \phi(\mathsf{x})$ is $O(1)$ -subgaussian.

Our Approach

Restated Goal: bound

$$
\sup_{y\in Q}|\langle\Sigma,\phi(y)\rangle_{\mathcal{H}_K}|=\sup_{y\in Q}\Big|\sum_{x\in X}K(x,y)\Big|,
$$

where $\Sigma := \sum_{\mathsf{x} \in \mathsf{X}} \varepsilon_{\mathsf{x}} \phi(\mathsf{x})$ is $O(1)$ -subgaussian.

Theorem (Dudley's Integral Inequality)

Let $(X_t)_{t\in\mathcal{T}}$ be a mean zero random process on a pseudometric space (T, d) satisfying $||X_t - X_s||_{\psi_2} \leq d(t, s)$ for all $t, s \in T$. Then

$$
\mathbb{E}\sup_{t\in\mathcal{T}}X_t\lesssim \int_0^{\text{diam}(d)}\sqrt{\log\mathcal{N}(\mathcal{T},d,\varepsilon)}\;d\varepsilon.
$$

Our Approach

Restated Goal: bound

$$
\sup_{y\in Q}|\langle\Sigma,\phi(y)\rangle_{\mathcal{H}_K}|=\sup_{y\in Q}\Big|\sum_{x\in X}K(x,y)\Big|,
$$

where $\Sigma := \sum_{\mathsf{x} \in \mathsf{X}} \varepsilon_{\mathsf{x}} \phi(\mathsf{x})$ is $O(1)$ -subgaussian.

Theorem (Dudley's Integral Inequality)

Let $(X_t)_{t\in\mathcal{T}}$ be a mean zero random process on a pseudometric space (T, d) satisfying $||X_t - X_s||_{\psi_2} \leq d(t, s)$ for all $t, s \in T$. Then

$$
\mathbb{E}\sup_{t\in\mathcal{T}}X_t\lesssim \int_0^{\operatorname{diam}(d)}\sqrt{\log\mathcal{N}(\mathcal{T},d,\varepsilon)}\;d\varepsilon.
$$

Key Idea: Apply Dudley to $\Sigma_v := \langle \Sigma, \phi(y) \rangle$ for $y \in Q$ with d given by $\|\cdot\|_{\mathcal{H}_\mathcal{K}}$, the *kernel distance*

Future Ideas

Key Question: How can we account for the geometry of the data in applications to get better bounds?

Future Ideas

Key Question: How can we account for the geometry of the data in applications to get better bounds?

▶ In general, we expect the bandwidth parameter to depend on n. If we account for this in our iteration, can we get better bounds?

Future Ideas

Key Question: How can we account for the geometry of the data in applications to get better bounds?

- ▶ In general, we expect the bandwidth parameter to depend on n. If we account for this in our iteration, can we get better bounds?
- \triangleright Can assumed properties of the distribution give us better bounds?

Thank You!

Questions? :)

[Vector Balancing and Kernel Density Estimation](#page-0-0)