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The Vector Balancing Problem
Given:

▶ Symmetric convex bodies
K ,Q ⊂ Rd

▶ Associated Minkowski norms
∥ · ∥K , ∥ · ∥Q

▶ Vectors v1, ..., vn ∈ K

Goal: find signs ε ∈ {±1}n to
minimize ∥∥∥ ∑

i∈[n]

εivi

∥∥∥
Q
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Discrepancy Theory

vb(K ,Q) := sup
{

min
x∈{±1}n

∥∥∥ n∑
i=1

xivi

∥∥∥
Q
: n ∈ N, v1, ..., vn ∈ K

}

Linear Algebraic Version: For A ∈ Rd×n, the discrepancy of A is

disc(A) = min
x∈{±1}n

∥Ax∥∞

Why discrepancy?
For A ∈ {0, 1}n we recover the

combinatorial discrepancy
problem.
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Kernel Density Estimation

Definition
Let ρ be a probability distribution on D, {X1, ...,Xn} ∼ ρ i.i.d.,
and K : D ×D → R. The Kernel Density Estimator (KDE) given
by K is then

KDEX (y) =
1

n

n∑
i=1

K (Xi , y).

Example: Gaussian kernel, KG (x , y) = exp(−α2∥x − y∥22)

▶ Well-known that KDEX (y) approximates ρ at the minimax
optimal rate as |X | → ∞ for ”well-behaved” kernels
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Coresets for KDEs

Definition (ε-Coreset)

Given ε > 0, K : D ×D → R, and a data set X ⊆ D, an ε-coreset
for K is a subset Q ⊆ X such that

∥KDEX−KDEQ∥∞ = sup
y∈D

∣∣∣∣∣∣ 1

|X |
∑
x∈X

K (x , y)− 1

|Q|
∑
q∈Q

K (q, y)

∣∣∣∣∣∣ ≤ ε.

▶ The coreset complexity of a kernel function K is the minimum
size coreset given any choice of X ⊆ D

▶ Bounds depend on K and the dimension d of the data, and
are independent of the size and choice of X .
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Kernel Discrepancy

Fix a kernel K : D ×D → [−1, 1] and data set X ⊆ D.

Assume
that |D| = d < ∞, |X | = n (think d ≫ n).

K ∈ Rd×n, Kij = K (yi , xj); columns K x ∈ Rd indexed by X

Suppose we can find balanced signs ε ∈ {±1}n so that∥∥∥∥∥∑
x∈X

εxK
x

∥∥∥∥∥
∞

= sup
i∈[d ]

∣∣∣∑
x∈X

εxK (yi , x)
∣∣∣ ≤ f (n, d).
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The Halving Trick
We take S− := {x : εx = −1} to be our coreset. For any y ∈ D:

|KDEX (y)−KDES−(y)| =
∣∣∣ 1
|X |

∑
x∈X

K (x , y)− 1
|X |/2

∑
x∈S−

K (x , y)
∣∣∣

=
1

|X |

∣∣∣∑
x∈X

K (x , y)− 2
∑
x∈S−

K (x , y)
∣∣∣

=
1

|X |

∣∣∣ ∑
x∈S+

K (x , y)−
∑
x∈S−

K (x , y)
∣∣∣

=
1

|X |

∣∣∣∑
x∈X

εxK (x , y)
∣∣∣

≤ f (n, d)/n.

Hope: f (n, d) decays polynomially with n, get bound via
iteration.
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Our Problem

Goal: Given a kernel K : D ×D → [0, 1], X ⊆ D, bound disc(K ).

▶ Phillips, 2013: disc(K ) = O(n1/2−1/d
√
log(n)) for Lipchitz,

rotation-and-shift invariant kernels; Θ(1) for d = 1

▶ Phillips and Tai, 2020: disc(K ) = O(
√
d log n) for positive

definite, Lipchitz, decaying kernels; Ω(
√
d) with added

assumption of rotation, shift invariance

▶ Tai, 2022: disc(KG ) = O(1) for d constant

And a related result...

▶ Karnin and Liberty, 2019: disc(K ) = O(
√
d) under very

strong assumptions on D
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Our Contributions

Broad Contribution: Ability to account for the geometry of the
data set X by dropping the discretization of D.

▶ disc(KG ),disc(KL) = O(
√
d log log n) for uniformly bounded

datasets X .

▶ disc(KL) = O(
√
log log n) for d constant.

▶ disc(K ) =
√
d log(2max{α, 1}) for the exponential, JS, and

Hellinger kernels

▶ Significantly improved dependence on bandwidth parameter α
for the exponential kernel
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Kernel Properties

For our purposes: the kernel K : D×D → [−1, 1], with D ⊆ Rd , is

▶ Positive definite: ∀x1, ..., xm ∈ D, the Gram matrix
Gij = K (xi , xj) is positive definite.

▶ Normalized: ∀x ∈ D, K (x , x) = 1.

▶ (Generally) of the form K (x , y) = κ(α∥x − y∥2),
κ : Rd × Rd → [−1, 1] strictly decreasing and continuous

Examples:

▶ Gaussian: KG (x , y) = exp(−α2∥x − y∥22), x , y ∈ Rd

▶ Laplacian: KL(x , y) = exp(−α∥x − y∥2), x , y ∈ Rd

▶ JS: KJS(x , y) = exp
(
− α

(
H( x+y

2 )− H(x)+H(y)
2

))
, x , y ∈ ∆d
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Key Theorem in Discrepancy Method

Theorem (Banaszczyk, ’98)

Given any convex body K ⊆ Rm of Gaussian measure
γm(K ) ≥ 1/2, and vector v1, ..., vn ∈ Bd

2 , there exist signs
ε ∈ {±1}n such that

∑
i∈[n] εivi ∈ CK, C > 0 an absolute

constant.

Theorem (Dadush et.al., 2018)

There is a polynomial-time randomized algorithm that takes as
input vectors v1, ..., vn ∈ Rm of ℓ2 norm at most 1 and outputs
random signs ε ∈ {±1}n such that the (mean-zero) random
variable

∑
i∈[n] εivi is O(1)-subgaussian.
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Reproducing Kernel Hilbert Spaces

Theorem (Moore-Aronszajn, 1950)

Let T be a set and K a positive definite function on T × T. Then
there is a map ϕ : T → HK to a unique corresponding reproducing
kernel Hilbert space HK so that for any s, t ∈ T,

K (s, t) = ⟨ϕ(s), ϕ(t)⟩HK
.

For fixed kernel K with associated RKHS map ϕ : D → HK , take
the collection of vectors {ϕ(x)})x∈X .

▶ Dadush et. al =⇒ ∃ε ∈ {±1}n such that
∑

x∈X εxϕ(x) is
O(1)-subgaussian.
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Our Approach
Restated Goal: bound

sup
y∈Q

|⟨Σ, ϕ(y)⟩HK
| = sup

y∈Q

∣∣∣∑
x∈X

K (x , y)
∣∣∣,

where Σ :=
∑

x∈X εxϕ(x) is O(1)-subgaussian.

Theorem (Dudley’s Integral Inequality)

Let (Xt)t∈T be a mean zero random process on a pseudometric
space (T , d) satisfying ∥Xt −Xs∥ψ2 ≤ d(t, s) for all t, s ∈ T. Then

E sup
t∈T

Xt ≲
∫ diam(d)

0

√
logN (T , d , ε) dε.

Key Idea: Apply Dudley to Σy := ⟨Σ, ϕ(y) for y ∈ Q with d given
by ∥ · ∥HK

, the kernel distance
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Future Ideas

Key Question: How can we account for the geometry of the data
in applications to get better bounds?

▶ In general, we expect the bandwidth parameter to depend on
n. If we account for this in our iteration, can we get better
bounds?

▶ Can assumed properties of the distribution give us better
bounds?
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Thank You!

Questions? :)
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