Exact covering with unit disks

Ji Hoon Chun (joint work with Vera Chekan, Christian Kipp, László Kozma, Michaela Borzechowski, and Sandro Roch)

Thursday, July 4, 2024 (with minor corrections and improvements)

Ji Hoon Chun

Exact covering with unit disks

Thursday, July 4, 2024 (with minor corre

イロト イポト イヨト イヨト

Naoki Inaba's puzzles

• Naoki Inaba is a Japanese puzzle creator who has developed over 400 different puzzles. One of them is about covering sets of points with disks.

Problem

Show that any set of 10 points in \mathbb{R}^2 can be covered by nonoverlapping unit disks.

- Inaba elegantly solved this problem with a probabilistic method.
- We will present an area-version of this proof on the next two slides.

3

A solution to Inaba's disk covering problem

Definition

Let σ_2 be the largest $n \in \mathbb{N}$ such that any set of n points in \mathbb{R}^2 can be covered by disjoint unit disks.

Theorem

 $\sigma_2 \geq 10.$

Proof.

Let $X = \{\mathbf{x}^1, \dots, \mathbf{x}^n\}$. Consider the hexagonal lattice A_2 , scaled so that the minimum distance between distinct points is 2. This packing has a density of $\delta(A_2) = \frac{\pi}{2\sqrt{3}} \approx 0.9069$. Let $\mathscr{A}_2 := \{\mathbf{c} + B^2 \subset \mathbb{R}^2 \mid \mathbf{c} \in A_2\}$, where $B^2 := \{\mathbf{z} \in \mathbb{R}^2 \mid \|\mathbf{z}\| < 1\}$ is the unit open disk. We wish to find a translation vector $\mathbf{t} \in \mathbb{R}^2$ such that the translated collection $\mathbf{t} + \mathscr{A}_2 := \{\mathbf{t} + D \subset \mathbb{R}^2 \mid D \in \mathscr{A}_2\}$ of disks covers X.

A solution to Inaba's disk covering problem

Proof (continued).

Each $\mathbf{x}^i \in X$ has a corresponding "forbidden" set

$$m{\mathcal{F}}_{\mathbf{x}^i} \coloneqq ig\{ \mathbf{t} \in \mathbb{R}^2 \, ig| \, \mathbf{x}^i
otin D ext{ for all } D \in \mathbf{t} + \mathscr{A}_2 ig\}$$

of translation vectors t such that $t + \mathscr{A}_2$ does not cover x^i . If

$$\bigcup_{i=1}^n F_{\mathbf{x}^i} \neq \mathbb{R}^2$$

then there exists a translation vector $\mathbf{t}' \in \mathbb{R}^2$ that is not in any forbidden set. So X is covered by $\mathbf{t}' + \mathscr{A}_2$. Each $F_{\mathbf{x}^i}$ takes up $1 - \delta(A_2) \approx 0.0931 < \frac{1}{10}$ of the plane, so the union cannot be all of the plane.

イロト 不得下 イヨト イヨト 二日

Probabilistic/area lower bound for σ_2

• Let Λ be any lattice in \mathbb{R}^2 and let $\delta(\Lambda)$ be its density. We have

$$\sigma_2 \ge \left\lceil \frac{1}{1-\delta(\Lambda)} \right\rceil - 1.$$

Lower and upper bounds for σ_2

- We have $\sigma_2 < \infty$.
 - A point set X that extends beyond one disk and consists of closely spaced points cannot be covered by disjoint disks.
 - Intuitively, this case is similar to the problem of covering conv X by disjoint disks.
- Currently we know that $12 \le \sigma_2 \le 44$.
 - Aloupis, Hearn, Iwasawa, and Uehara (2012) achieved σ₂ ≥ 12 using a more elaborate probabilistic strategy on vertical line subsets of the plane.
 - The upper bound was reduced from $\sigma_2 < 60$ (Winkler 2010) to $\sigma_2 < 55$ (Elser 2011) and $\sigma_2 < 53$ (Okayama, Kiyomi, and Uehara 2012).
 - Most recently, Aloupis, Hearn, Iwasawa, and Uehara (2012) found a 50-point subset of A₂ and a 45-point set consisting of three concentric circles (using a computer) that cannot be covered by disjoint sets.

The exact cover relaxation

• Our work focuses on a relaxed version of Inaba's problem where the disks are allowed to overlap, but each point is covered by only one disk: exact covering.

Definition

Let $\widehat{\sigma}_2$ be the largest $n \in \mathbb{N}$ such that any set of n points in \mathbb{R}^2 can be exactly covered.

- Every disjoint cover is an exact cover.
- $\hat{\sigma}_2$ is finite for the same reason that σ_2 is finite.
- Hence we have the basic inequalities

$$\sigma_2 \leq \widehat{\sigma}_2 < \infty.$$

• • = • • = •

A lower bound for $\widehat{\sigma}_2$

Ji Hoon Chun

Exact covering with unit disks

Thursday, July 4, 2024 (with minor corre

3

イロン イ団 と イヨン イヨン

The Extension Argument

Definition

We say that a point $x \in X$ is a **boundary point** of X if x is on the boundary of conv X.

 László Kozma (personal communication) found a simple proof of the inequality σ
₂ ≥ σ₂ + 3.

Lemma (Extension Argument)

Let k be the number of boundary points of conv X.

- If $|X| \le \sigma_2 + k$ then X can be exactly covered. (|X| = cardinality)
- 3 If $k \leq 2$ then X can be exactly covered regardless of |X|.
- $\widehat{\sigma}_2 \geq \sigma_2 + 3.$

Proof of the Extension Argument

Proof of Part 1 of the Extension Argument.

Let $X \in \mathscr{X}$. Cover all the non-boundary points of X by a collection \mathscr{D}' of disjoint disks. For each boundary point $\mathbf{b} \in X$:

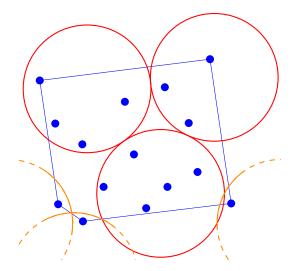
- **1** If **b** is already covered by \mathscr{D}' , then do nothing.
- **2** If **b** is not covered by \mathcal{D}' , then add a new disk that covers **b** but no other point of X.

Such a disk exists because conv X is convex and B^2 is strictly convex.

The resulting collection $\mathscr{D} := \mathscr{D}' \cup \{\text{all new disks from case } 2\}$ is an exact cover of X.

• The Extension Argument with Aloupis, Hearn, Iwasawa, and Uehara's result of $\sigma_2 \ge 12$ implies $\hat{\sigma}_2 \ge 15$.

Proof of the Extension Argument



Thursday, July 4, 2024 (with minor corre

• • = • • = •

Generalizing the Extension Argument

- The Extension Argument is limited by the case where conv X is a triangle, because then X may have only three boundary points.
- If we can loosen the boundary point condition so that every X has at least four "generalized boundary points," then we have $\hat{\sigma}_2 \ge 16$.

Definition

We say that a point $\mathbf{b} \in X$ is a generalized boundary point of X if there exists a disk $\mathbf{c} + B^2$ that contains \mathbf{b} but no other point of X.

Lemma (Generalized Extension Argument)

Let k be the number of generalized boundary points of conv X.

- If $|X| \leq \sigma_2 + k$ then X can be exactly covered.
- 2 If $k \leq 3$ then X can be exactly covered regardless of |X|.
- $\widehat{\sigma}_2 \geq \sigma_2 + \mathbf{4}.$

The lower bound $\widehat{\sigma}_2 \geq 17$

- Suppose that $T := \operatorname{conv} X$ is a triangle. Let R_T be its circumradius.
- We focus on triangles since they give the "worst-case scenario" of three boundary points.
- The proof of the Generalized Extension Argument involves four different cases, listed below from "largest" *T* to "smallest" *T*:
 - At least one side of T has length ≥ 2 .
 - 2 All sides of T have length < 2 but $R_T > 1$.
 - 3 All sides of T have length < 2 and $R_T = 1$.
 - All sides of T have length < 2 and $R_T < 1$.
- For cases 1 and 2, *T* is "large enough" for *X* to have at least four generalized boundary points.
- For cases 3 and 4, T is "small enough" for X to be exactly covered regardless of the number of points.
- Then $\widehat{\sigma}_2 \geq \sigma_2 + 4 \geq 16$.
- We reach $\hat{\sigma}_2 \geq 17$ using complicated technical arguments.

An upper bound

Ji Hoon Chun

Exact covering with unit disks

Image: A the second second

Nets and blockers

- We obtain an upper bound for $\hat{\sigma}_2$ by constructing a point set which cannot be exactly covered.
- Let X be a nonempty subset of ℝ², y ∈ ℝ², and ε > 0. The distance from y to X is dist (y, X) := inf {||y − x|| | x ∈ X} and the ε-extension of X is

$$X_arepsilon \coloneqq \left\{ \mathbf{y} \in \mathbb{R}^2 \, \middle| \, \mathsf{dist} \left(\mathbf{y}, X
ight) \leq arepsilon
ight\}.$$

- The set X is an ε -net of $M \subseteq \mathbb{R}^2$ if $M \subseteq X_{\varepsilon}$.
- The set *M* is an ε-blocker if every point set X that is an ε-net of M cannot be exactly covered.
- The minimal cardinality of an ε-net of M is called the covering number of M and is denoted by N(M, ε).
- We have $\widehat{\sigma}_2 < N(M, \varepsilon)$ for any ε -blocker M.

The upper bound $\widehat{\sigma}_2 < 657$

• So we look for a suitable M and ε .

Proposition

Let $\varepsilon \in (0, 7 - \sqrt{48} \approx 0.0718]$ and $r \ge \frac{3}{2}(1 + \varepsilon) \approx 1.608$. The disk $M = rB^2$ is an ε -blocker.

• It follows that for any $y\in \mathbb{R}^2,$

$$X(\mathbf{y}) \coloneqq \left(\mathbf{y} + \frac{\varepsilon\sqrt{3}}{2}A_2\right) \cap (r+\varepsilon) B^2.$$

is an ε -net of rB^2 .

• So we search for an appropriate vector \mathbf{y} that minimizes $|X(\mathbf{y})|$. The best result that we found is

$$\widehat{\sigma}_2 < \left| X \left(\begin{pmatrix} 0.035 \\ -0.055 \end{pmatrix} \right) \right| = 657.$$

Exact covering with unit disks

Higher dimensions

Ji Hoon Chun

Exact covering with unit disks

Thursday, July 4, 2024 (with minor corre

3

イロン イ団 と イヨン イヨン

Higher dimensions are not very interesting

• Inaba's problem has a straightforward generalization to any \mathbb{R}^d .

Definition

For any $d \in \mathbb{N}$, let σ_d and $\hat{\sigma}_d$ be the largest $n \in \mathbb{N}$ such that any set of n points in \mathbb{R}^d can be covered by disjoint unit disks or can be exactly covered, respectively.

- Many of our methods do not easily scale to higher dimensions.
- Those that do tend to have limited effectiveness as *d* increases.

Lower bounds for σ_d

- We can show that $\sigma_d \geq 3$ for all $d \in \mathbb{N}$ using a similar approach to our proof of the Generalized Extension Argument.
- The density of the densest infinite packing is ≤ 0.5 for all d ≥ 5, so the probabilistic/area method reduces to a triviality.

Dimension	Densest known packing	Density	Lower bound $\sigma_d \ge \left\lceil \frac{1}{1-\delta(\Lambda)} \right\rceil - 1$
2	A ₂	$rac{\pi}{2\sqrt{3}}pprox 0.9069$	10
3	<i>D</i> ₃	$rac{\pi}{3\sqrt{2}}pprox 0.7405$	3
4	<i>D</i> ₄	$rac{\pi^2}{16}pprox 0.6169$	2
5	D_5	$rac{\pi^2}{15\sqrt{2}}pprox 0.4653$	1
6	E ₆	$rac{\pi^3}{48\sqrt{3}}pprox 0.3729$	1
		4	

Ji Hoon Chun

Exact covering with unit disks

Thursday, July 4, 2024 (with minor corre

A simple lower bound for $\widehat{\sigma}_d$

• In \mathbb{R}^d , the Extension Argument is limited by a *d*-dimensional simplex instead of a triangle.

Lemma (d-dimensional Extension Argument)

Let k be the number of generalized boundary points of $\operatorname{conv} X \subset \mathbb{R}^d$.

- If $|X| \leq \sigma_2 + k$ then X can be exactly covered.
- 3 If $k \leq d + 1$ then X can be exactly covered regardless of |X|.
- $\widehat{\sigma}_d \geq \sigma_d + (d+2).$

• Hence we obtain, in general,

$$\widehat{\sigma}_d \geq 3 + (d+2) = d+5.$$

• We also reach $\hat{\sigma}_3 \geq 9$ using some complicated arguments.

Possible future directions

Ji Hoon Chun

Exact covering with unit disks

Thursday, July 4, 2024 (with minor corre

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Future directions

• We have a preprint, which provides the technical details and additional figures:

https://arxiv.org/abs/2401.15821

- Other convex bodies.
- Computational complexity.

3

Thank you for your attention!

Ji Hoon Chun

Exact covering with unit disks

Thursday, July 4, 2024 (with minor corre

э