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Introduction

1 17n
Volume of central hyperplane sections of @, = [— 5 5} as a

function of its normal vector:
_ 1
o(v) = Vol,_1(Q,Nv™)

o(v) is invariant under scalings of v by a non-zero factor, and by
embeddings in higher dimensions.
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Previous results

@ o(v) is calculable with Pélya's (1913) integral formula.

@ Minimal sections are parallel to a facet of Q,, their volume is 1
(Hadwiger (1972)).

@ Maximal sections are orthogonal to the diagonal of a
2-dimensional face of Q,, their volume is /2 (Ball (1986)).

@ Noncentral and lower dimensional sections. (Ball, Ivanov,
Kdnig, Moody, Stone, Vaaler, Zach, Zvavitch)

@ Sections of the regular simplex and ¢, unit balls. (Chasapis,
Dirksen, Meyer, Nayar, Pajor, Tkocz, Webb)
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Previous results

@ o(v) is calculable with Pélya's (1913) integral formula.

@ Minimal sections are parallel to a facet of Q,, their volume is 1
(Hadwiger (1972)).

@ Maximal sections are orthogonal to the diagonal of a
2-dimensional face of Q,, their volume is /2 (Ball (1986)).

@ Noncentral and lower dimensional sections. (Ball, Ivanov,
Kdnig, Moody, Stone, Vaaler, Zach, Zvavitch)

@ Sections of the regular simplex and ¢, unit balls. (Chasapis,
Dirksen, Meyer, Nayar, Pajor, Tkocz, Webb)

Definition

v € S" 1 s a critical direction if it is a critical point of the function
a(v) on S"~1. Then @, Nv= is a critical section.
Locally extremal sections are defined similarly.
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Diagonal directions

Definition

Unit vectors parallel to the diagonal of a k-dimensional face of Q,
are called k-diagonal directions. Corresponding sections are
k-diagonal sections.

Up to permutation of coordinates and change of signs, they have

the form of
1
Aok = —=(1,...... L0, 0)
) \/} —~
k n—k
@ Based on Hensley's (1979) asymptotic formula, if k ~ n then

6

O'(dmk) ~ ;

e Bartha, Fodor and Gonzalez Merino (2020) showed that for
fixed n the sequence of k-diagonal sections is strictly

monotone increasing for k > 3.
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Diagonal directions

Definition

Unit vectors parallel to the diagonal of a k-dimensional face of Q,
are called k-diagonal directions. Corresponding sections are
k-diagonal sections.
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Maximality of diagonal sections

Theorem (Pournin (2023))

For all k > 3 k-diagonal sections are strictly locally maximal among
central sections of Q, for each n > 4.

We provided an alternative proof in the special case k = n.
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Maximality of diagonal sections

Theorem (Pournin (2023))
For all k > 3 k-diagonal sections are strictly locally maximal among

central sections of Q, for each n > 4.

The main diagonal section @, N 1+ has strictly locally maximal
volume among central sections of Q,, for each n > 4.

Our proof uses Lagrange multiplier methods. This requires first to
show that diagonal directions are critical.
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Maximality of diagonal sections

Theorem (Pournin (2023))

For all k > 3 k-diagonal sections are strictly locally maximal among
central sections of Q, for each n > 4.

The main diagonal section @, N 1+ has strictly locally maximal
volume among central sections of @, for each n > 4.

¢

Statement (Ambrus (2022))

v € S"1 is a critical direction if and only if up to permuting
coordinates and changing signs v = e1, or

o(v) = 1 /OO Hsinc(v,-t) - cos (vjt) dt

holds for each j =1,...,n.

.
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Main idea of the proof

Suppose that v € S"~! is a critical direction. Then v is a stationary
point of the Lagrange function

A(V) = o (v) + 0(2\/) (VP —1)
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Main idea of the proof

Suppose that v € S"~! is a critical direction. Then v is a stationary
point of the Lagrange function
o(v) 2
A(v) = o(v) + — (Jv]* = 1)
Its bordered Hessian matrix is

0 2vq 2v 2v,
2vi
HAW) = | 22 8% if j £ k

0,
OvjOvy (V) +o(v)- {1 if j=k

2V,
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Main idea of the proof

Suppose that v € S"~! is a critical direction. Then v is a stationary
point of the Lagrange function
o(v) 2
A(v) = o(v) + — (Jv]* = 1)
Its bordered Hessian matrix is

0 2vq 2v 2v,
2vi
HAW) = | 22 8% 0, ifj#k
e TV
i 2V, ]

1
The main diagonal direction d,, = 71,, is critical. Denote with
n

Hp, the mth principal minors of H(A(d,)) (m=3,...,n).
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Main idea of the proof

Suppose that v € S"~! is a critical direction. Then v is a stationary
point of the Lagrange function
o(v) 2
A(v) = o(v) + — (Jv]* = 1)
Its bordered Hessian matrix is

0 2vq 2v 2v,
2vi

= 2v 2 0, ifj#k

HA) %7 (o) 7
OvjOvy 1, ifj=k
L 2Vn -

The main diagonal direction d, = —=1,, is critical. Denote with
n

Hp the mth principal minors of H(A(d,)) (m=3,...,n). If
vm (=1)"'H, >0

then o(v) is strictly locally maximal at d,, respect to v € S"~1.
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Further characterization of critical directions

Theorem (Ambrus (2022))

v=(v1,...,vn) € S""Yis critical direction if and only if up to
permuting coordinates and change of signs v = d, >, or there exists
some i > 0 for which

Vol,_1(conv(0U (Rx N VL))) = u(l - VI%)

holds true for each k = 1,...,n, where
Re=A{(q1,---,qn) € Qn: gk =1}.

Corollary (Ambrus (2022))

For n = 2,3, all critical directions are diagonal. If n = 4, then the
critical directions are either diagonal or parallel to the vector
(1,1,2,2) up to permuting coordinates and changing signs.
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Non-diagonal critical sections

For all n > 4 there exist non-diagonal critical central sections of Q,
whose normal vector is not parallel to any of the coordinate axes.
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Non-diagonal critical sections

For all n > 4 there exist non-diagonal critical central sections of Q,
whose normal vector is not parallel to any of the coordinate axes.
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Non-diagonal critical directions

Consider the following class of vectors:

vak(a):=(a,...... a, b,...... b) € s

k n— k
1 1 — ka?
whereaelk::[,ﬁ],andb—b,,7k(a): n—z'

9/13



Non-diagonal critical directions

Consider the following class of vectors:

vak(a) = (a,...... a, b,...... b) € s
k n— k
1 1 — ka®
where a € [ .= {0, ﬁ] and b := by «(a) = —

Main idea of the proof: there is some a € b, for which the vector
vn,2(a) is non-diagonal, consists non-zero coordinates and is a
critical direction.

9/13



Non-diagonal critical directions

Consider the following class of vectors:

vak(a) = (a,...... a, b,...... b) € s

1 1 — ka?
where a € I .= {0, ﬁ] and b := by «(a) = \/?_

Main idea of the proof: there is some a € b, for which the vector

vn,2(a) is non-diagonal, consists non-zero coordinates and is a
critical direction.

Based on the Characterization Theorem, v, «(a) is critical direction
for exactly those a's, which are zeros of the function

1 < .
Foi(a):= 2 / sinc" X bt - sinck"1 at - cos at dt—
—0o0

1 o
] / sinc" %=1 bt . sincX at - cos bt dt.
- —0o0
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Building up the proof
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1 1
For each2 < k < n—2, — and —= are both zeros of F,, .

vk /n

.

For each 4 < k < n— 2, F, is differentiable Iy. In the case of

k = 2,3, differentiability is true for every compact subinterval of I
which does not contain the right end point. Moreover, in both
cases we have

,’,7k(\%) < 0.

i
.

For each n > 4, F,2(a) > 0 for every a € [7,,, —] where

V2
_ n—2
U= V 2n -3
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Non-diagonal directions are not extremal

@ ¢, is the (first) zero guaranteed by the proof and w = v, 5(&p).

12/13
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Non-diagonal directions are not extremal

@ ¢, is the (first) zero guaranteed by the proof and w = v, 5(&p).
@ Exclude that o(w) is strictly locally minimal.

@ Show that the Hessian matrix of the Lagrange function H is
not positive definite at w.
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Non-diagonal directions are not extremal

@ ¢, is the (first) zero guaranteed by the proof and w = v, 5(&p).
@ Exclude that o(w) is strictly locally minimal.

@ Show that the Hessian matrix of the Lagrange function H is
not positive definite at w.

e Find a vector q such that qﬁqT < 0.
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Non-diagonal directions are not extremal

@ ¢, is the (first) zero guaranteed by the proof and w = v, 5(&p).
@ Exclude that o(w) is strictly locally minimal.

@ Show that the Hessian matrix of the Lagrange function H is
not positive definite at w.

e Find a vector q such that qﬁqT < 0.
@ Suitable choice: q =(1,-1,0,...,0).

12/13



Thank you for your attention!

New National Excellence Program of the
Ministry for Culture and Innovation from :
the source of the National Research, Uj Nemzeti MINISTRY OF CULTURE

: Kivaldsag Program AND [NNOVATION

Development and Innovation Fund. 4 SRR

Supported by the UNKP-23-2-SZTE-584 " (I]

13/13



Open questions

@ Number of zeros of F, > and so the number of non-diagonal
critical directions?

e Asymptotic behaviour of the zeros of Fj,5?
@ Are there other type of critical directions?

@ In the case of k > 3, are unit vectors v, , not critical
directions?
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The coordinates of critical directions are determined by the zeros of
the function

Fno(a) = 2 /_Z sinc"? bt - sinc at - cos at dt—
— ﬁ /_Z sinc™ 3 bt - sinc? at - cos bt dt.
In small dimensions these are:

4 |0,632455 13| 0,638774 22 | 0,639416
5 1 0,634265 14 | 0,638893 23 | 0,639453
6 | 0,636071 15 | 0,638998 24 | 0,639486
7 | 0,636935 16 | 0,639081 251 0,639517
8 | 0,637520 17 | 0,639156 26 | 0,639545
9 | 0,637921 18 | 0,639222 27 1 0,639570
10 | 0,638219 19 | 0,639278 28 | 0,639594
11| 0,638445 20 | 0,639329 29 | 0,639616
12 | 0, 638625 21| 0,639375 30 | 0,639636
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Tools from probability theory

Let Xi,...,X, be independent random variables distributed
uniformly on [—1,1]. The joint distribution (X1, ..., X,) induces
the normalized Lebesgue measure on 2Q,. Let v € S"1.

\ o\

n

ZV,‘X,‘— r

i=1

d

1
< 5) = E\/Oln(q € 2Qn : |<q,V> - I” < E)

2fsn uxi(r) = |V1|s(v, %) .
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The characteristic function of the random variable >~7 ; v;X; is

8027:1 V,'X,'(t) - H Sinc(v,-t)

where )
sin x

, ifx#0
1, if x = 0.

sincx =
Hence s(v, r) is derived by taking the inverse Fourier transform:
|V|
s(v,r) smc vjt) - cos(2rt) dt.

Then the normalized central section s(v,0) is

v .
o(v) = "— sinc(v;t) dt = s(v,0).
!
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Lagrange multiplier method

If v e S"1is a critical direction, then

0
(9V,'

o(v) = —o(v) - v

Accordingly, v is a stationary point of the Lagrange function
Av) = o(v) + A(vf - 1)

where

< o(v)
A= 2

is the Lagrange multiplier.
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Laplace-Pélya integral

For each n > 2

(n+ 3)Jn+2(0) < (n+ 2)Jn(0),

where

In(r) = 1/ sinc” t - cos(rt) dt

—00

.

Connection of this integral with other fields:

@ geometry: volume of hyperplane sections of @,
e probability theory: probability density function of > 7 ; X;
@ combinatorics: recursive formula by Thompson (1966)

J,,(r) _ n—+r

1) ——Jpa(r—1)

Jn—l(r + 1) + m
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Let n > 4 and r be integers satisfying —1 < r < n—2. Then

(n—r—=2)(n—r)(n—r+2)

(n+r)(n+r+2)(n+r+4)
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o

«@e

13/13



Connection with Eulerian numbers

%W

Recursive formula of Eulerian numbers:

Am)=(m—=1+1A(m—-1,1-1)+1A(m—1,/)

Recursive formula by Thompson (1966):
n—+r n—r
= 1(r—1
Jn(r) 2(”—1)J 1(/’ )+

Connection between them:
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