Non-diagonal critical central sections of the cube

Barnabás Gárgyán

University of Szeged, Bolyai Institute

Joint work with Gergely Ambrus

Discrete Geometry Days Budapest, 2 July 2024

Introduction

Introduction

Volume of central hyperplane sections of $Q_n = \left[-\frac{1}{2}, \frac{1}{2}\right]^n$ as a function of its normal vector:

$$\sigma(\mathsf{v}) = \operatorname{Vol}_{n-1}(Q_n \cap \mathsf{v}^{\perp})$$

 $\sigma(v)$ is invariant under scalings of v by a non-zero factor, and by embeddings in higher dimensions.

Previous results

- $\sigma(v)$ is calculable with Pólya's (1913) integral formula.
- Minimal sections are parallel to a facet of Q_n , their volume is 1 (Hadwiger (1972)).
- Maximal sections are orthogonal to the diagonal of a 2-dimensional face of Q_n , their volume is $\sqrt{2}$ (Ball (1986)).
- Noncentral and lower dimensional sections. (Ball, Ivanov, König, Moody, Stone, Vaaler, Zach, Zvavitch)
- Sections of the regular simplex and ℓ_p unit balls. (Chasapis, Dirksen, Meyer, Nayar, Pajor, Tkocz, Webb)

Previous results

- $\sigma(v)$ is calculable with Pólya's (1913) integral formula.
- Minimal sections are parallel to a facet of Q_n , their volume is 1 (Hadwiger (1972)).
- Maximal sections are orthogonal to the diagonal of a 2-dimensional face of Q_n , their volume is $\sqrt{2}$ (Ball (1986)).
- Noncentral and lower dimensional sections. (Ball, Ivanov, König, Moody, Stone, Vaaler, Zach, Zvavitch)
- Sections of the regular simplex and l_p unit balls. (Chasapis, Dirksen, Meyer, Nayar, Pajor, Tkocz, Webb)

Definition

 $v \in S^{n-1}$ is a critical direction if it is a critical point of the function $\sigma(v)$ on S^{n-1} . Then $Q_n \cap v^{\perp}$ is a critical section. Locally extremal sections are defined similarly.

Diagonal directions

Definition

Unit vectors parallel to the diagonal of a k-dimensional face of Q_n are called k-diagonal directions. Corresponding sections are k-diagonal sections.

Up to permutation of coordinates and change of signs, they have the form of

$$\mathsf{d}_{n,k} := \frac{1}{\sqrt{k}} (\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{n-k}).$$

• Based on Hensley's (1979) asymptotic formula, if $k \approx n$ then

$$\sigma(\mathsf{d}_{n,k})\approx\sqrt{\frac{6}{\pi}}.$$

 Bartha, Fodor and González Merino (2020) showed that for fixed n the sequence of k-diagonal sections is strictly monotone increasing for k ≥ 3.

Diagonal directions

Definition

Unit vectors parallel to the diagonal of a k-dimensional face of Q_n are called k-diagonal directions. Corresponding sections are k-diagonal sections.

Maximality of diagonal sections

Theorem (Pournin (2023))

For all $k \ge 3$ k-diagonal sections are strictly locally maximal among central sections of Q_n for each $n \ge 4$.

We provided an alternative proof in the special case k = n.

Maximality of diagonal sections

Theorem (Pournin (2023))

For all $k \ge 3$ k-diagonal sections are strictly locally maximal among central sections of Q_n for each $n \ge 4$.

Theorem

The main diagonal section $Q_n \cap 1_n^{\perp}$ has strictly locally maximal volume among central sections of Q_n for each $n \ge 4$.

Our proof uses Lagrange multiplier methods. This requires first to show that diagonal directions are critical.

Maximality of diagonal sections

Theorem (Pournin (2023))

For all $k \ge 3$ k-diagonal sections are strictly locally maximal among central sections of Q_n for each $n \ge 4$.

Theorem

The main diagonal section $Q_n \cap 1_n^{\perp}$ has strictly locally maximal volume among central sections of Q_n for each $n \ge 4$.

Statement (Ambrus (2022))

 $v\in S^{n-1}$ is a critical direction if and only if up to permuting coordinates and changing signs $v=e_1,$ or

$$\sigma(\mathbf{v}) = \frac{1}{\pi(1-v_j^2)} \int_{-\infty}^{\infty} \prod_{i \neq j} \operatorname{sinc}(v_i t) \cdot \cos(v_j t) \, \mathrm{d}t$$

holds for each $j = 1, \ldots, n$.

Suppose that $\mathsf{v}\in S^{n-1}$ is a critical direction. Then v is a stationary point of the Lagrange function

$$\Lambda(\mathbf{v}) = \sigma(\mathbf{v}) + \frac{\sigma(\mathbf{v})}{2} \cdot \left(|\mathbf{v}|^2 - 1\right)$$

Suppose that $\mathsf{v}\in S^{n-1}$ is a critical direction. Then v is a stationary point of the Lagrange function

$$\Lambda(\mathbf{v}) = \sigma(\mathbf{v}) + \frac{\sigma(\mathbf{v})}{2} \cdot (|\mathbf{v}|^2 - 1)$$

Its bordered Hessian matrix is

$$H(\Lambda(\mathbf{v})) = \begin{bmatrix} 0 & 2v_1 & 2v_2 & \dots & 2v_n \\ 2v_1 & & & \\ 2v_2 & \frac{\partial^2 \sigma}{\partial v_j \partial v_k}(\mathbf{v}) + \sigma(\mathbf{v}) \cdot \begin{cases} 0, & \text{if } j \neq k \\ 1, & \text{if } j = k \end{cases} \end{bmatrix}$$

Suppose that $v \in S^{n-1}$ is a critical direction. Then v is a stationary point of the Lagrange function

$$\Lambda(\mathbf{v}) = \sigma(\mathbf{v}) + \frac{\sigma(\mathbf{v})}{2} \cdot \left(|\mathbf{v}|^2 - 1\right)$$

Its bordered Hessian matrix is

$$H(\Lambda(\mathbf{v})) = \begin{bmatrix} 0 & 2v_1 & 2v_2 & \dots & 2v_n \\ 2v_1 & & & \\ & 2v_2 & \frac{\partial^2 \sigma}{\partial v_j \partial v_k}(\mathbf{v}) + \sigma(\mathbf{v}) \cdot \begin{cases} 0, & \text{if } j \neq k \\ 1, & \text{if } j = k \\ 2v_n & & \end{bmatrix}$$

The main diagonal direction $d_n = \frac{1}{\sqrt{n}} \mathbf{1}_n$ is critical. Denote with H_m the *m*th principal minors of $H(\Lambda(d_n))$ (m = 3, ..., n).

Suppose that $v \in S^{n-1}$ is a critical direction. Then v is a stationary point of the Lagrange function

$$\Lambda(\mathbf{v}) = \sigma(\mathbf{v}) + \frac{\sigma(\mathbf{v})}{2} \cdot \left(|\mathbf{v}|^2 - 1\right)$$

Its bordered Hessian matrix is

$$H(\Lambda(\mathbf{v})) = \begin{bmatrix} 0 & 2v_1 & 2v_2 & \dots & 2v_n \\ 2v_1 & & & \\ & 2v_2 & \frac{\partial^2 \sigma}{\partial v_j \partial v_k}(\mathbf{v}) + \sigma(\mathbf{v}) \cdot \begin{cases} 0, & \text{if } j \neq k \\ 1, & \text{if } j = k \\ 2v_n & & \end{bmatrix}$$

The main diagonal direction $d_n = \frac{1}{\sqrt{n}} \mathbf{1}_n$ is critical. Denote with H_m the *m*th principal minors of $H(\Lambda(d_n))$ (m = 3, ..., n). If $\forall m \quad (-1)^{m-1}H_m > 0$

then $\sigma(v)$ is strictly locally maximal at d_n respect to $v \in S^{n-1}$.

Theorem (Ambrus (2022))

 $v = (v_1, ..., v_n) \in S^{n-1}$ is critical direction if and only if up to permuting coordinates and change of signs $v = d_{n,2}$, or there exists some $\mu > 0$ for which

$$\mathrm{Vol}_{n-1}(\mathsf{conv}(\mathsf{0}\cup(\mathsf{R}_k\cap\mathsf{v}^\perp)))=\mu(1-\mathsf{v}_k^2)$$

holds true for each $k = 1, \ldots, n$, where $R_k = \{(q_1, \ldots, q_n) \in Q_n : q_k = 1\}.$

Corollary (Ambrus (2022))

For n = 2, 3, all critical directions are diagonal. If n = 4, then the critical directions are either diagonal or parallel to the vector (1, 1, 2, 2) up to permuting coordinates and changing signs.

Non-diagonal critical sections

Theorem

For all $n \ge 4$ there exist non-diagonal critical central sections of Q_n whose normal vector is not parallel to any of the coordinate axes.

Non-diagonal critical sections

Theorem

For all $n \ge 4$ there exist non-diagonal critical central sections of Q_n whose normal vector is not parallel to any of the coordinate axes.

Non-diagonal critical sections

Theorem

For all $n \ge 4$ there exist non-diagonal critical central sections of Q_n whose normal vector is not parallel to any of the coordinate axes.

Non-diagonal critical directions

Consider the following class of vectors:

$$\mathsf{v}_{n,k}(a) := \underbrace{(a, \dots, a,}_{k} \quad \underbrace{b, \dots, b}_{n-k}) \in S^{n-1},$$

where $a \in I_k := \begin{bmatrix} 0, \frac{1}{\sqrt{k}} \end{bmatrix}$, and $b := b_{n,k}(a) = \sqrt{\frac{1-ka^2}{n-k}}.$

Non-diagonal critical directions

Consider the following class of vectors:

$$\mathsf{v}_{n,k}(a) := (\underbrace{a, \dots, a}_{k}, \underbrace{b, \dots, b}_{n-k}) \in S^{n-1},$$

where $a \in I_k := \left[0, \frac{1}{\sqrt{k}}\right]$, and $b := b_{n,k}(a) = \sqrt{\frac{1-ka^2}{n-k}}.$

Main idea of the proof: there is some $a \in I_2$, for which the vector $v_{n,2}(a)$ is non-diagonal, consists non-zero coordinates and is a critical direction.

Non-diagonal critical directions

Consider the following class of vectors:

$$\mathsf{v}_{n,k}(a) := (\underbrace{a, \dots, a}_{k}, \underbrace{b, \dots, b}_{n-k}) \in S^{n-1},$$

where $a \in I_k := \left[0, \frac{1}{\sqrt{k}}\right]$, and $b := b_{n,k}(a) = \sqrt{\frac{1-ka^2}{n-k}}.$

Main idea of the proof: there is some $a \in I_2$, for which the vector $v_{n,2}(a)$ is non-diagonal, consists non-zero coordinates and is a critical direction.

Based on the *Characterization Theorem*, $v_{n,k}(a)$ is critical direction for exactly those a's, which are zeros of the function

$$F_{n,k}(a) := \frac{1}{1-a^2} \int_{-\infty}^{\infty} \operatorname{sinc}^{n-k} bt \cdot \operatorname{sinc}^{k-1} at \cdot \cos at \, \mathrm{d}t - \frac{1}{1-b^2} \int_{-\infty}^{\infty} \operatorname{sinc}^{n-k-1} bt \cdot \operatorname{sinc}^k at \cdot \cos bt \, \mathrm{d}t.$$

Building up the proof

10 / 13

Lemma 1

For each
$$2 \le k \le n-2$$
, $\frac{1}{\sqrt{k}}$ and $\frac{1}{\sqrt{n}}$ are both zeros of $F_{n,k}$.

Lemma 2

For each $4 \le k \le n-2$, $F_{n,k}$ is differentiable I_k . In the case of k = 2, 3, differentiability is true for every compact subinterval of I_k which does not contain the right end point. Moreover, in both cases we have

$$F_{n,k}'\left(\frac{1}{\sqrt{n}}\right) < 0.$$

Lemma 3

For each
$$n \ge 4$$
, $F_{n,2}(a) \ge 0$ for every $a \in \left[\gamma_n, \frac{1}{\sqrt{2}}\right]$ where

$$\gamma_n = \sqrt{\frac{n-2}{2n-3}}.$$

• ξ_n is the (first) zero guaranteed by the proof and $w = v_{n,2}(\xi_n)$.

- ξ_n is the (first) zero guaranteed by the proof and $w = v_{n,2}(\xi_n)$.
- Exclude that $\sigma(w)$ is strictly locally minimal.

- ξ_n is the (first) zero guaranteed by the proof and $w = v_{n,2}(\xi_n)$.
- Exclude that $\sigma(w)$ is strictly locally minimal.
- Show that the Hessian matrix of the Lagrange function \widetilde{H} is not positive definite at w.

- ξ_n is the (first) zero guaranteed by the proof and $w = v_{n,2}(\xi_n)$.
- Exclude that $\sigma(w)$ is strictly locally minimal.
- Show that the Hessian matrix of the Lagrange function H
 is not positive definite at w.
- Find a vector q such that $q \tilde{H} q^T < 0$.

- ξ_n is the (first) zero guaranteed by the proof and $w = v_{n,2}(\xi_n)$.
- Exclude that $\sigma(w)$ is strictly locally minimal.
- Show that the Hessian matrix of the Lagrange function H
 is not positive definite at w.
- Find a vector q such that $q\widetilde{H}q^T < 0$.
- Suitable choice: $q = (1, -1, 0, \dots, 0)$.

Thank you for your attention!

Supported by the ÚNKP-23-2-SZTE-584 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.

- Number of zeros of $F_{n,2}$ and so the number of non-diagonal critical directions?
- Asymptotic behaviour of the zeros of $F_{n,2}$?
- Are there other type of critical directions?
- In the case of k ≥ 3, are unit vectors v_{n,k} not critical directions?

The coordinates of critical directions are determined by the zeros of the function

$$F_{n,2}(a) = \frac{1}{1-a^2} \int_{-\infty}^{\infty} \operatorname{sinc}^{n-2} bt \cdot \operatorname{sinc} at \cdot \cos at \, \mathrm{d}t - \frac{1}{1-b^2} \int_{-\infty}^{\infty} \operatorname{sinc}^{n-3} bt \cdot \operatorname{sinc}^2 at \cdot \cos bt \, \mathrm{d}t.$$

In small dimensions these are:

4	0,632455	13	0,638774	22	0,639416
5	0,634265	14	0,638893	23	0,639453
6	0,636071	15	0,638998	24	0,639486
7	0,636935	16	0,639081	25	0,639517
8	0,637520	17	0,639156	26	0,639545
9	0,637921	18	0,639222	27	0,639570
10	0,638219	19	0,639278	28	0,639594
11	0,638445	20	0,639329	29	0,639616
12	0,638625	21	0,639375	30	0,639636

Tools from probability theory

Let X_1, \ldots, X_n be independent random variables distributed uniformly on [-1, 1]. The joint distribution (X_1, \ldots, X_n) induces the normalized Lebesgue measure on $2Q_n$. Let $v \in S^{n-1}$.

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} v_{i}X_{i} - r\right| \leq \varepsilon\right) = \frac{1}{2^{n}} \operatorname{Vol}_{n} (\mathsf{q} \in 2Q_{n} : |\langle \mathsf{q}, \mathsf{v} \rangle - r| \leq \varepsilon)$$
$$2f_{\sum_{i=1}^{n} v_{i}X_{i}}(r) = \frac{1}{|\mathsf{v}|} s\left(\mathsf{v}, \frac{r}{2}\right).$$

The characteristic function of the random variable $\sum_{i=1}^{n} v_i X_i$ is

$$\varphi_{\sum_{i=1}^{n} v_i X_i}(t) = \prod_{i=1}^{n} \operatorname{sinc}(v_i t),$$

where

sinc
$$x = \begin{cases} \frac{\sin x}{x}, & \text{if } x \neq 0\\ 1, & \text{if } x = 0. \end{cases}$$

Hence s(v, r) is derived by taking the inverse Fourier transform:

$$s(\mathbf{v},r) = \frac{|\mathbf{v}|}{\pi} \int_{-\infty}^{\infty} \prod_{i=1}^{n} \operatorname{sinc}(v_i t) \cdot \cos(2rt) \, \mathrm{d}t.$$

Then the normalized central section s(v, 0) is

$$\sigma(\mathbf{v}) = \frac{|\mathbf{v}|}{\pi} \int_{-\infty}^{\infty} \prod_{i=1}^{n} \operatorname{sinc}(v_{i}t) \, \mathrm{d}t = s(\mathbf{v}, \mathbf{0}).$$

Lagrange multiplier method

If $v \in S^{n-1}$ is a critical direction, then

$$\frac{\partial}{\partial v_i}\sigma(\mathbf{v}) = -\sigma(\mathbf{v})\cdot v_i.$$

Accordingly, v is a stationary point of the Lagrange function

$$\Lambda(\mathbf{v}) = \sigma(\mathbf{v}) + \tilde{\lambda}(|\mathbf{v}|^2 - 1)$$

where

$$\tilde{\lambda} = \frac{\sigma(\mathsf{v})}{2}$$

is the Lagrange multiplier.

Laplace-Pólya integral

Statement

For each $n \ge 2$

$$(n+3)J_{n+2}(0) < (n+2)J_n(0),$$

where

$$J_n(r) = \frac{1}{\pi} \int_{-\infty}^{\infty} \operatorname{sinc}^n t \cdot \cos(rt) \, \mathrm{d}t$$

Connection of this integral with other fields:

- geometry: volume of hyperplane sections of Q_n
- probability theory: probability density function of $\sum_{i=1}^{n} X_i$
- combinatorics: recursive formula by Thompson (1966)

$$J_n(r) = \frac{n+r}{2(n-1)}J_{n-1}(r+1) + \frac{n-r}{2(n-1)}J_{n-1}(r-1)$$

Theorem

Let $n \ge 4$ and r be integers satisfying $-1 \le r \le n-2$. Then

$$\frac{J_n(r+2)}{J_n(r)} \leq \frac{(n-r-2)(n-r)(n-r+2)}{(n+r)(n+r+2)(n+r+4)}$$

Connection with Eulerian numbers

Recursive formula of Eulerian numbers:

$$A(m, l) = (m - l + 1)A(m - 1, l - 1) + lA(m - 1, l)$$

Recursive formula by Thompson (1966):

$$J_n(r) = \frac{n+r}{2(n-1)}J_{n-1}(r-1) + \frac{n-r}{2(n-1)}J_{n-1}(r-1)$$

Connection between them:

$$J_n(r) = \frac{1}{(n-1)!} A\left(n-1, \frac{n+r}{2}\right)$$