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Introduction

Volume of central hyperplane sections of Qn =
[
− 1

2
,
1
2

]n
as a

function of its normal vector:

σ(v) = Voln−1(Qn ∩ v⊥)

σ(v) is invariant under scalings of v by a non-zero factor, and by
embeddings in higher dimensions.
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Previous results
σ(v) is calculable with Pólya’s (1913) integral formula.

Minimal sections are parallel to a facet of Qn, their volume is 1
(Hadwiger (1972)).

Maximal sections are orthogonal to the diagonal of a
2-dimensional face of Qn, their volume is

√
2 (Ball (1986)).

Noncentral and lower dimensional sections. (Ball, Ivanov,
König, Moody, Stone, Vaaler, Zach, Zvavitch)

Sections of the regular simplex and ℓp unit balls. (Chasapis,
Dirksen, Meyer, Nayar, Pajor, Tkocz, Webb)

Definition

v ∈ Sn−1 is a critical direction if it is a critical point of the function
σ(v) on Sn−1. Then Qn ∩ v⊥ is a critical section.
Locally extremal sections are defined similarly.
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Diagonal directions

Definition
Unit vectors parallel to the diagonal of a k-dimensional face of Qn

are called k-diagonal directions. Corresponding sections are
k-diagonal sections.

Up to permutation of coordinates and change of signs, they have
the form of

dn,k :=
1√
k

(
1, 1, 0, 0

)︸ ︷︷ ︸
k

︸ ︷︷ ︸
n − k

.

Based on Hensley’s (1979) asymptotic formula, if k ≈ n then

σ
(
dn,k

)
≈
√

6
π
.

Bartha, Fodor and González Merino (2020) showed that for
fixed n the sequence of k-diagonal sections is strictly
monotone increasing for k ≥ 3.
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Maximality of diagonal sections

Theorem (Pournin (2023))

For all k ≥ 3 k-diagonal sections are strictly locally maximal among
central sections of Qn for each n ≥ 4.

We provided an alternative proof in the special case k = n.

Theorem

The main diagonal section Qn ∩ 1⊥n has strictly locally maximal
volume among central sections of Qn for each n ≥ 4.

Statement (Ambrus (2022))

v ∈ Sn−1 is a critical direction if and only if up to permuting
coordinates and changing signs v = e1, or

σ(v) =
1

π(1 − v2
j )

∫ ∞

−∞

∏
i ̸=j

sinc (vi t) · cos (vj t) dt

holds for each j = 1, . . . , n.
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Main idea of the proof
Suppose that v ∈ Sn−1 is a critical direction. Then v is a stationary
point of the Lagrange function

Λ(v) = σ(v) +
σ(v)

2
·
(
|v|2 − 1

)

Its bordered Hessian matrix is

H(Λ(v)) =


0 2v1 2v2 . . . 2vn

2v1

2v2

...
2vn

∂2σ

∂vj∂vk
(v) + σ(v) ·

{
0, if j ̸= k

1, if j = k


The main diagonal direction dn =

1√
n
1n is critical. Denote with

Hm the mth principal minors of H(Λ(dn)) (m = 3, . . . , n). If

∀m (−1)m−1Hm > 0

then σ(v) is strictly locally maximal at dn respect to v ∈ Sn−1.
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Further characterization of critical directions

Theorem (Ambrus (2022))

v = (v1, . . . , vn) ∈ Sn−1 is critical direction if and only if up to
permuting coordinates and change of signs v = dn,2, or there exists
some µ > 0 for which

Voln−1(conv(0 ∪ (Rk ∩ v⊥))) = µ(1 − v2
k )

holds true for each k = 1, . . . , n, where
Rk = {(q1, . . . , qn) ∈ Qn : qk = 1}.

Corollary (Ambrus (2022))

For n = 2, 3, all critical directions are diagonal. If n = 4, then the
critical directions are either diagonal or parallel to the vector
(1, 1, 2, 2) up to permuting coordinates and changing signs.
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Non-diagonal critical sections

Theorem
For all n ≥ 4 there exist non-diagonal critical central sections of Qn

whose normal vector is not parallel to any of the coordinate axes.
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Non-diagonal critical directions
Consider the following class of vectors:

vn,k(a) :=
(
a, a, b, b

)︸ ︷︷ ︸
k

︸ ︷︷ ︸
n − k

∈ Sn−1,

where a ∈ Ik :=
[
0,

1√
k

]
, and b := bn,k(a) =

√
1 − ka2

n − k
.

Main idea of the proof: there is some a ∈ I2, for which the vector
vn,2(a) is non-diagonal, consists non-zero coordinates and is a
critical direction.

Based on the Characterization Theorem, vn,k(a) is critical direction
for exactly those a’s, which are zeros of the function

Fn,k(a) : =
1

1 − a2

∫ ∞

−∞
sincn−k bt · sinck−1 at · cos at dt−

− 1
1 − b2

∫ ∞

−∞
sincn−k−1 bt · sinck at · cos bt dt.
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Building up the proof
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Lemma 1

For each 2 ≤ k ≤ n − 2,
1√
k

and
1√
n

are both zeros of Fn,k .

Lemma 2
For each 4 ≤ k ≤ n − 2, Fn,k is differentiable Ik . In the case of
k = 2, 3, differentiability is true for every compact subinterval of Ik
which does not contain the right end point. Moreover, in both
cases we have

F ′
n,k

( 1√
n

)
< 0.

Lemma 3

For each n ≥ 4, Fn,2(a) ≥ 0 for every a ∈
[
γn,

1√
2

]
where

γn =

√
n − 2
2n − 3

.
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Non-diagonal directions are not extremal
ξn is the (first) zero guaranteed by the proof and w = vn,2(ξn).

Exclude that σ(w) is strictly locally minimal.

Show that the Hessian matrix of the Lagrange function H̃ is
not positive definite at w.

Find a vector q such that qH̃qT < 0.

Suitable choice: q = (1,−1, 0, . . . , 0).

-1.0 -0.5 0.5 1.0

1.300

1.305

1.310

1.315
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Open questions

Number of zeros of Fn,2 and so the number of non-diagonal
critical directions?

Asymptotic behaviour of the zeros of Fn,2?

Are there other type of critical directions?

In the case of k ≥ 3, are unit vectors vn,k not critical
directions?
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The coordinates of critical directions are determined by the zeros of
the function

Fn,2(a) =
1

1 − a2

∫ ∞

−∞
sincn−2 bt · sinc at · cos at dt−

− 1
1 − b2

∫ ∞

−∞
sincn−3 bt · sinc2 at · cos bt dt.

In small dimensions these are:

4 0, 632455 13 0, 638774 22 0, 639416
5 0, 634265 14 0, 638893 23 0, 639453
6 0, 636071 15 0, 638998 24 0, 639486
7 0, 636935 16 0, 639081 25 0, 639517
8 0, 637520 17 0, 639156 26 0, 639545
9 0, 637921 18 0, 639222 27 0, 639570
10 0, 638219 19 0, 639278 28 0, 639594
11 0, 638445 20 0, 639329 29 0, 639616
12 0, 638625 21 0, 639375 30 0, 639636
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Tools from probability theory
Let X1, . . . ,Xn be independent random variables distributed
uniformly on [−1, 1]. The joint distribution (X1, . . . ,Xn) induces
the normalized Lebesgue measure on 2Qn. Let v ∈ Sn−1.

v

Q2

P

(∣∣∣∣∣
n∑

i=1

viXi − r

∣∣∣∣∣ ≤ ε

)
=

1
2n

Voln(q ∈ 2Qn : |⟨q, v⟩ − r | ≤ ε)

2f∑n
i=1 viXi

(r) =
1
|v|

s
(
v,

r

2

)
.
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The characteristic function of the random variable
∑n

i=1 viXi is

φ∑n
i=1 viXi

(t) =
n∏

i=1

sinc(vi t),

where

sinc x =


sin x

x
, if x ̸= 0

1, if x = 0.

Hence s(v, r) is derived by taking the inverse Fourier transform:

s(v, r) =
|v|
π

∫ ∞

−∞

n∏
i=1

sinc(vi t) · cos(2rt) dt.

Then the normalized central section s(v, 0) is

σ(v) =
|v|
π

∫ ∞

−∞

n∏
i=1

sinc(vi t) dt = s(v, 0).
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Lagrange multiplier method

If v ∈ Sn−1 is a critical direction, then

∂

∂vi
σ(v) = −σ(v) · vi .

Accordingly, v is a stationary point of the Lagrange function

Λ(v) = σ(v) + λ̃
(
|v|2 − 1

)
where

λ̃ =
σ(v)

2
is the Lagrange multiplier.
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Laplace-Pólya integral

Statement
For each n ≥ 2

(n + 3)Jn+2(0) < (n + 2)Jn(0),

where
Jn(r) =

1
π

∫ ∞

−∞
sincn t · cos(rt) dt

Connection of this integral with other fields:

geometry: volume of hyperplane sections of Qn

probability theory: probability density function of
∑n

i=1 Xi

combinatorics: recursive formula by Thompson (1966)

Jn(r) =
n + r

2(n − 1)
Jn−1(r + 1) +

n − r

2(n − 1)
Jn−1(r − 1)
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Theorem
Let n ≥ 4 and r be integers satisfying −1 ≤ r ≤ n − 2. Then

Jn(r + 2)
Jn(r)

≤ (n − r − 2)(n − r)(n − r + 2)
(n + r)(n + r + 2)(n + r + 4)

.

0 2 4 6 8 10

0.1

0.2

0.3
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0.5

0.6

J(n,2)

J(n,0)

n-2

n+4

(n-1)n

(n+2) (n+3)
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Connection with Eulerian numbers

Recursive formula of Eulerian numbers:

A(m, l) = (m − l + 1)A(m − 1, l − 1) + l A(m − 1, l)

Recursive formula by Thompson (1966):

Jn(r) =
n + r

2(n − 1)
Jn−1(r − 1) +

n − r

2(n − 1)
Jn−1(r − 1)

Connection between them:

Jn(r) =
1

(n − 1)!
A

(
n − 1,

n + r

2

)
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