Non-diagonal critical central sections of the cube

Barnabás Gárgyán

University of Szeged, Bolyai Institute

Joint work with Gergely Ambrus

Discrete Geometry Days Budapest, 2 July 2024

Introduction

Introduction

Volume of central hyperplane sections of $\mathcal{Q}_n = \Big[-\frac{1}{2}\Big]$ $\frac{1}{2},\frac{1}{2}$ 2 $\left| \begin{smallmatrix} n & \\ & \text{as a} \end{smallmatrix} \right|$ function of its normal vector:

$$
\sigma(v) = \text{Vol}_{n-1}(Q_n \cap v^{\perp})
$$

 $\sigma(v)$ is invariant under scalings of v by a non-zero factor, and by embeddings in higher dimensions.

Previous results

- $\sigma(v)$ is calculable with Pólya's (1913) integral formula.
- Minimal sections are parallel to a facet of Q_n , their volume is 1 (Hadwiger (1972)).
- Maximal sections are orthogonal to the diagonal of a wiaximal sections are orthogonal to the diagonal of a
2-dimensional face of Q_n , their volume is $\sqrt{2}$ (Ball (1986)).
- Noncentral and lower dimensional sections. (Ball, Ivanov, König, Moody, Stone, Vaaler, Zach, Zvavitch)
- Sections of the regular simplex and ℓ_p unit balls. (Chasapis, Dirksen, Meyer, Nayar, Pajor, Tkocz, Webb)

Previous results

- $\sigma(v)$ is calculable with Pólya's (1913) integral formula.
- Minimal sections are parallel to a facet of Q_n , their volume is 1 (Hadwiger (1972)).
- Maximal sections are orthogonal to the diagonal of a wiaximal sections are orthogonal to the diagonal of a
2-dimensional face of Q_n , their volume is $\sqrt{2}$ (Ball (1986)).
- Noncentral and lower dimensional sections. (Ball, Ivanov, König, Moody, Stone, Vaaler, Zach, Zvavitch)
- Sections of the regular simplex and ℓ_p unit balls. (Chasapis, Dirksen, Meyer, Nayar, Pajor, Tkocz, Webb)

Definition

v ∈ \mathcal{S}^{n-1} is a critical direction if it is a critical point of the function $\sigma(\mathsf{v})$ on $\mathsf{S}^{n-1}.$ Then $Q_n\cap \mathsf{v}^\perp$ is a critical section. Locally extremal sections are defined similarly.

Diagonal directions

Definition

Unit vectors parallel to the diagonal of a k-dimensional face of Q_n are called k-diagonal directions. Corresponding sections are k-diagonal sections.

Up to permutation of coordinates and change of signs, they have the form of

$$
d_{n,k} := \frac{1}{\sqrt{k}} (\underbrace{1, \ldots \ldots 1}_{k}, \underbrace{0, \ldots \ldots 0}_{n-k}).
$$

• Based on Hensley's (1979) asymptotic formula, if $k ≈ n$ then

$$
\sigma(d_{n,k}) \approx \sqrt{\frac{6}{\pi}}.
$$

• Bartha, Fodor and González Merino (2020) showed that for fixed *n* the sequence of k -diagonal sections is strictly monotone increasing for $k \geq 3$.

Diagonal directions

Definition

Unit vectors parallel to the diagonal of a k-dimensional face of Q_n are called k-diagonal directions. Corresponding sections are k-diagonal sections.

4 / 13

Maximality of diagonal sections

Theorem (Pournin (2023))

For all $k > 3$ k-diagonal sections are strictly locally maximal among central sections of Q_n for each $n > 4$.

We provided an alternative proof in the special case $k = n$.

Maximality of diagonal sections

Theorem (Pournin (2023))

For all $k > 3$ k-diagonal sections are strictly locally maximal among central sections of Q_n for each $n > 4$.

Theorem

The main diagonal section $Q_n \cap 1^{\perp}_n$ has strictly locally maximal volume among central sections of Q_n for each $n > 4$.

Our proof uses Lagrange multiplier methods. This requires first to show that diagonal directions are critical.

Maximality of diagonal sections

Theorem (Pournin (2023))

For all $k > 3$ k-diagonal sections are strictly locally maximal among central sections of Q_n for each $n > 4$.

Theorem

The main diagonal section $Q_n \cap 1^{\perp}_n$ has strictly locally maximal volume among central sections of Q_n for each $n \geq 4$.

Statement (Ambrus (2022))

 $\mathsf{v}\in\mathsf{S}^{n-1}$ is a critical direction if and only if up to permuting coordinates and changing signs $v = e_1$, or

$$
\sigma(v) = \frac{1}{\pi(1 - v_j^2)} \int_{-\infty}^{\infty} \prod_{i \neq j} \text{sinc}(v_i t) \cdot \text{cos}(v_j t) dt
$$

holds for each $i = 1, \ldots, n$.

Suppose that $\mathsf{v}\in\mathsf{S}^{n-1}$ is a critical direction. Then v is a stationary point of the Lagrange function

$$
\Lambda(v)=\sigma(v)+\frac{\sigma(v)}{2}\cdot\big(|v|^2-1\big)
$$

Suppose that $\mathsf{v}\in\mathsf{S}^{n-1}$ is a critical direction. Then v is a stationary point of the Lagrange function

$$
\Lambda(v) = \sigma(v) + \frac{\sigma(v)}{2} \cdot (|v|^2 - 1)
$$

Its bordered Hessian matrix is

$$
H(\Lambda(v)) = \begin{bmatrix} 0 & 2v_1 & 2v_2 & \dots & 2v_n \\ 2v_1 & & & \\ 2v_2 & \frac{\partial^2 \sigma}{\partial v_j \partial v_k}(v) + \sigma(v) \cdot \begin{cases} 0, & \text{if } j \neq k \\ 1, & \text{if } j = k \end{cases} \\ 2v_n \end{bmatrix}
$$

Suppose that $\mathsf{v}\in\mathsf{S}^{n-1}$ is a critical direction. Then v is a stationary point of the Lagrange function

$$
\Lambda(v) = \sigma(v) + \frac{\sigma(v)}{2} \cdot (|v|^2 - 1)
$$

Its bordered Hessian matrix is

$$
H(\Lambda(v)) = \begin{bmatrix} 0 & 2v_1 & 2v_2 & \dots & 2v_n \\ 2v_1 & & & \\ 2v_2 & \frac{\partial^2 \sigma}{\partial v_j \partial v_k}(v) + \sigma(v) \cdot \begin{cases} 0, & \text{if } j \neq k \\ 1, & \text{if } j = k \end{cases} \\ 2v_n \end{bmatrix}
$$

The main diagonal direction d $_n = \frac{1}{\sqrt{2\pi}}$ $=1_n$ is critical. Denote with H_m the mth principal minors of $H(\Lambda(d_n))$ (m = 3, ..., n).

Suppose that $\mathsf{v}\in\mathsf{S}^{n-1}$ is a critical direction. Then v is a stationary point of the Lagrange function

$$
\Lambda(v) = \sigma(v) + \frac{\sigma(v)}{2} \cdot (|v|^2 - 1)
$$

Its bordered Hessian matrix is

$$
H(\Lambda(v)) = \begin{bmatrix} 0 & 2v_1 & 2v_2 & \dots & 2v_n \\ 2v_1 & & & \\ 2v_2 & \frac{\partial^2 \sigma}{\partial v_j \partial v_k}(v) + \sigma(v) \cdot \begin{cases} 0, & \text{if } j \neq k \\ 1, & \text{if } j = k \end{cases} \\ 2v_n \end{bmatrix}
$$

The main diagonal direction d $_n = \frac{1}{\sqrt{2\pi}}$ $=1_n$ is critical. Denote with H_m the mth principal minors of $H(\Lambda(d_n))$ (m = 3, ..., n). If $\forall m \quad (-1)^{m-1} H_m > 0$

then $\sigma({\sf v})$ is strictly locally maximal at ${\sf d}_n$ respect to ${\sf v}\in{\sf S}^{n-1}.$

Theorem (Ambrus (2022))

 ${\sf v}=({\sf v}_1,\ldots,{\sf v}_n)\in S^{n-1}$ is critical direction if and only if up to permuting coordinates and change of signs $v = d_{n,2}$, or there exists some $\mu > 0$ for which

$$
\text{Vol}_{n-1}(\text{conv}(0\cup(R_k\cap\mathsf{v}^{\perp})))=\mu(1-\mathsf{v}_k^2)
$$

holds true for each $k = 1, \ldots, n$, where $R_k = \{(q_1, \ldots, q_n) \in Q_n : q_k = 1\}.$

Corollary (Ambrus (2022))

For $n = 2, 3$, all critical directions are diagonal. If $n = 4$, then the critical directions are either diagonal or parallel to the vector $(1, 1, 2, 2)$ up to permuting coordinates and changing signs.

Non-diagonal critical sections

Theorem

For all $n \geq 4$ there exist non-diagonal critical central sections of Q_n whose normal vector is not parallel to any of the coordinate axes.

Non-diagonal critical sections

Theorem

For all $n \geq 4$ there exist non-diagonal critical central sections of Q_n whose normal vector is not parallel to any of the coordinate axes.

Non-diagonal critical sections

Theorem

For all $n \geq 4$ there exist non-diagonal critical central sections of Q_n whose normal vector is not parallel to any of the coordinate axes.

Non-diagonal critical directions

Consider the following class of vectors:

$$
v_{n,k}(a) := \underbrace{(a, \ldots a, b, \ldots b)}_{k} \in S^{n-1},
$$
\n
$$
\text{where } a \in I_k := \left[0, \frac{1}{\sqrt{k}}\right], \text{ and } b := b_{n,k}(a) = \sqrt{\frac{1 - ka^2}{n - k}}.
$$

Non-diagonal critical directions

Consider the following class of vectors:

$$
v_{n,k}(a) := \underbrace{(a, \ldots a, b, \ldots b)}_{k} \in S^{n-1},
$$
\n
$$
v_{n,k}(a) := \underbrace{(a, \ldots a, b, \ldots b)}_{k} \in S^{n-1},
$$
\n
$$
v_{n,k}(a) = \sqrt{\frac{1 - ka^2}{n - k}}.
$$

Main idea of the proof: there is some $a \in I_2$, for which the vector $v_{n,2}(a)$ is non-diagonal, consists non-zero coordinates and is a critical direction.

Non-diagonal critical directions

Consider the following class of vectors:

$$
v_{n,k}(a) := \underbrace{(a, \ldots a, b, \ldots b)}_{k} \in S^{n-1},
$$
\n
$$
v_{n,k}(a) := \underbrace{(a, \ldots a, b, \ldots b)}_{k} \in S^{n-1},
$$
\n
$$
v_{n,k}(a) = \sqrt{\frac{1 - ka^2}{n - k}}.
$$

Main idea of the proof: there is some $a \in I_2$, for which the vector $v_{n,2}(a)$ is non-diagonal, consists non-zero coordinates and is a critical direction.

Based on the *Characterization Theorem*, $v_{n,k}(a)$ is critical direction for exactly those a's, which are zeros of the function

$$
F_{n,k}(a) := \frac{1}{1-a^2} \int_{-\infty}^{\infty} \operatorname{sinc}^{n-k} bt \cdot \operatorname{sinc}^{k-1} at \cdot \cos at \, dt -
$$

$$
-\frac{1}{1-b^2} \int_{-\infty}^{\infty} \operatorname{sinc}^{n-k-1} bt \cdot \operatorname{sinc}^{k} at \cdot \cos bt \, dt.
$$

Building up the proof

10 / 13

Lemma 1

For each
$$
2 \le k \le n-2
$$
, $\frac{1}{\sqrt{k}}$ and $\frac{1}{\sqrt{n}}$ are both zeros of $F_{n,k}$.

Lemma 2

For each $4 \leq k \leq n-2$, $F_{n,k}$ is differentiable I_k . In the case of $k = 2, 3$, differentiability is true for every compact subinterval of I_k which does not contain the right end point. Moreover, in both cases we have

$$
F'_{n,k}\Big(\frac{1}{\sqrt{n}}\Big)<0.
$$

Lemma 3

For each
$$
n \ge 4
$$
, $F_{n,2}(a) \ge 0$ for every $a \in \left[\gamma_n, \frac{1}{\sqrt{2}}\right]$ where

$$
\gamma_n=\sqrt{\frac{n-2}{2n-3}}.
$$

• ξ_n is the (first) zero guaranteed by the proof and $w = v_{n,2}(\xi_n)$.

- \bullet ξ_n is the (first) zero guaranteed by the proof and $w = v_{n,2}(\xi_n)$.
- Exclude that $\sigma(w)$ is strictly locally minimal.

- \bullet ξ_n is the (first) zero guaranteed by the proof and $w = v_{n,2}(\xi_n)$.
- Exclude that $\sigma(w)$ is strictly locally minimal.
- \bullet Show that the Hessian matrix of the Lagrange function H is not positive definite at w.

- \bullet ξ_n is the (first) zero guaranteed by the proof and $w = v_{n,2}(\xi_n)$.
- Exclude that $\sigma(w)$ is strictly locally minimal.
- \bullet Show that the Hessian matrix of the Lagrange function H is not positive definite at w.
- Find a vector q such that $qHq^T < 0$.

- \bullet ξ_n is the (first) zero guaranteed by the proof and $w = v_{n,2}(\xi_n)$.
- Exclude that $\sigma(w)$ is strictly locally minimal.
- \bullet Show that the Hessian matrix of the Lagrange function H is not positive definite at w.
- Find a vector q such that $qHq^T < 0$.
- Suitable choice: $q = (1, -1, 0, \ldots, 0)$.

Thank you for your attention!

Supported by the ÚNKP-23-2-SZTE-584 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.

- Number of zeros of $F_{n,2}$ and so the number of non-diagonal critical directions?
- Asymptotic behaviour of the zeros of $F_{n,2}$?
- Are there other type of critical directions?
- In the case of $k \geq 3$, are unit vectors $v_{n,k}$ not critical directions?

The coordinates of critical directions are determined by the zeros of the function

$$
F_{n,2}(a) = \frac{1}{1-a^2} \int_{-\infty}^{\infty} \operatorname{sinc}^{n-2} bt \cdot \operatorname{sinc} at \cdot \cos at \, dt -
$$

$$
-\frac{1}{1-b^2} \int_{-\infty}^{\infty} \operatorname{sinc}^{n-3} bt \cdot \operatorname{sinc}^2 at \cdot \cos bt \, dt.
$$

In small dimensions these are:

Tools from probability theory

Let X_1, \ldots, X_n be independent random variables distributed uniformly on $[-1, 1]$. The joint distribution (X_1, \ldots, X_n) induces the normalized Lebesgue measure on 2 Q_n . Let v \in $S^{n-1}.$

$$
\mathbb{P}\Bigg(\Bigg|\sum_{i=1}^n v_i X_i - r\Bigg| \leq \varepsilon\Bigg) = \frac{1}{2^n} \text{Vol}_n(q \in 2Q_n: |\langle q, v \rangle - r| \leq \varepsilon)
$$

$$
2f_{\sum_{i=1}^n v_i X_i}(r) = \frac{1}{|v|} s\Big(\nu, \frac{r}{2}\Big).
$$

The characteristic function of the random variable $\sum_{i=1}^n v_i X_i$ is

$$
\varphi_{\sum_{i=1}^n v_i X_i}(t) = \prod_{i=1}^n \text{sinc}(v_i t),
$$

where

$$
\operatorname{sinc} x = \begin{cases} \frac{\sin x}{x}, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0. \end{cases}
$$

Hence $s(v, r)$ is derived by taking the inverse Fourier transform:

$$
s(v,r) = \frac{|v|}{\pi} \int_{-\infty}^{\infty} \prod_{i=1}^{n} \text{sinc}(v_i t) \cdot \text{cos}(2rt) dt.
$$

Then the normalized central section $s(v, 0)$ is

$$
\sigma(v) = \frac{|v|}{\pi} \int_{-\infty}^{\infty} \prod_{i=1}^{n} \text{sinc}(v_i t) dt = s(v, 0).
$$

Lagrange multiplier method

If $v \in S^{n-1}$ is a critical direction, then

$$
\frac{\partial}{\partial v_i}\sigma(v)=-\sigma(v)\cdot v_i.
$$

Accordingly, v is a stationary point of the Lagrange function

$$
\Lambda(v)=\sigma(v)+\tilde{\lambda}\big(|v|^2-1\big)
$$

where

$$
\tilde{\lambda} = \frac{\sigma(v)}{2}
$$

is the Lagrange multiplier.

Laplace-Pólya integral

Statement

For each $n > 2$

$$
(n+3)J_{n+2}(0) < (n+2)J_n(0),
$$

where

$$
J_n(r) = \frac{1}{\pi} \int_{-\infty}^{\infty} \operatorname{sinc}^n t \cdot \cos(rt) dt
$$

Connection of this integral with other fields:

- **e** geometry: volume of hyperplane sections of Q_n
- probability theory: probability density function of $\sum_{i=1}^n X_i$
- combinatorics: recursive formula by Thompson (1966)

$$
J_n(r) = \frac{n+r}{2(n-1)}J_{n-1}(r+1) + \frac{n-r}{2(n-1)}J_{n-1}(r-1)
$$

Theorem

Let $n \geq 4$ and r be integers satisfying $-1 \leq r \leq n-2$. Then

$$
\frac{J_n(r+2)}{J_n(r)} \leq \frac{(n-r-2)(n-r)(n-r+2)}{(n+r)(n+r+2)(n+r+4)}.
$$

Connection with Eulerian numbers

Recursive formula of Eulerian numbers:

$$
A(m, l) = (m - l + 1)A(m - 1, l - 1) + l A(m - 1, l)
$$

Recursive formula by Thompson (1966):

$$
J_n(r) = \frac{n+r}{2(n-1)}J_{n-1}(r-1) + \frac{n-r}{2(n-1)}J_{n-1}(r-1)
$$

Connection between them:

$$
J_n(r) = \frac{1}{(n-1)!} A\left(n-1, \frac{n+r}{2}\right)
$$