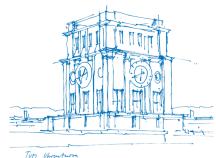


Improving Inequalities on k-Dimensional Volume Extremal Ellipsoids Using Asymmetry Coefficients

Joint work with René Brandenberg

Florian Grundbacher Technical University of Munich Department of Mathematics July 3, 2024



$$C \in \mathcal{K}^n$$
 if $C \subset \mathbb{R}^n$ convex, compact, $\operatorname{int}(C) \neq \emptyset$

$$C \in \mathcal{K}^n$$
 if $C \subset \mathbb{R}^n$ convex, compact, $\operatorname{int}(C) \neq \emptyset$

$$\mathcal{E}_J(C) = \mathbb{B}_2^n$$
 (resp. $\mathcal{E}_L(C) = \mathbb{B}_2^n$) if and only if

$$C \in \mathcal{K}^n$$
 if $C \subset \mathbb{R}^n$ convex, compact, $\operatorname{int}(C) \neq \emptyset$

$$\mathcal{E}_J(C) = \mathbb{B}_2^n$$
 (resp. $\mathcal{E}_L(C) = \mathbb{B}_2^n$) if and only if
(i) $\mathbb{B}_2^n \subset C$ (resp. $C \subset \mathbb{B}_2^n$), and

$$C \in \mathcal{K}^n$$
 if $C \subset \mathbb{R}^n$ convex, compact, $\operatorname{int}(C) \neq \emptyset$

$$\mathcal{E}_J(C) = \mathbb{B}_2^n$$
 (resp. $\mathcal{E}_L(C) = \mathbb{B}_2^n$) if and only if
 (i) $\mathbb{B}_2^n \subset C$ (resp. $C \subset \mathbb{B}_2^n$), and

(ii)
$$\exists u_1,...,u_m \in \mathsf{bd}(\mathbb{B}_2^n) \cap \mathsf{bd}(C)$$
 and $\lambda_1,...,\lambda_m > 0$ s.t.

$$C \in \mathcal{K}^n$$
 if $C \subset \mathbb{R}^n$ convex, compact, $int(C) \neq \emptyset$

$$\mathcal{E}_J(C) = \mathbb{B}_2^n$$
 (resp. $\mathcal{E}_L(C) = \mathbb{B}_2^n$) if and only if

- (i) $\mathbb{B}_2^n \subset C$ (resp. $C \subset \mathbb{B}_2^n$), and
- (ii) $\exists u_1, ..., u_m \in \mathsf{bd}(\mathbb{B}_2^n) \cap \mathsf{bd}(C)$ and $\lambda_1, ..., \lambda_m > 0$ s.t.

(a)
$$\sum_{i=1}^{m} \lambda_i u_i = 0$$
, and

$$C \in \mathcal{K}^n$$
 if $C \subset \mathbb{R}^n$ convex, compact, $int(C) \neq \emptyset$

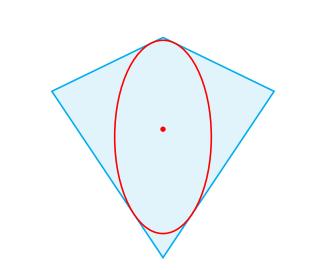
$$\mathcal{E}_J(C) = \mathbb{B}_2^n$$
 (resp. $\mathcal{E}_L(C) = \mathbb{B}_2^n$) if and only if

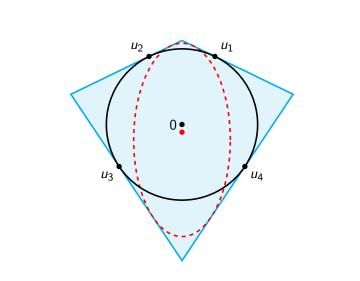
- (i) $\mathbb{B}_2^n \subset C$ (resp. $C \subset \mathbb{B}_2^n$), and
- (ii) $\exists u_1,...,u_m \in \mathsf{bd}(\mathbb{B}^n_2) \cap \mathsf{bd}(C)$ and $\lambda_1,...,\lambda_m > 0$ s.t.
 - (a) $\sum_{i=1}^{m} \lambda_i u_i = 0$, and
 - (b) $\sum_{i=1}^{i=1} \lambda_i(u_i u_i^T) = I_n.$

$$C \in \mathcal{K}^n$$
 if $C \subset \mathbb{R}^n$ convex, compact, $\operatorname{int}(C) \neq \emptyset$

$$\mathcal{E}_J(C) = \mathbb{B}_2^n$$
 (resp. $\mathcal{E}_L(C) = \mathbb{B}_2^n$) if and only if

- (i) $\mathbb{B}_2^n \subset C$ (resp. $C \subset \mathbb{B}_2^n$), and
- (ii) $\exists u_1, ..., u_m \in \mathsf{bd}(\mathbb{B}_2^n) \cap \mathsf{bd}(C)$ and $\lambda_1, ..., \lambda_m > 0$ s.t.
- (a) $\sum_{i=1}^{m} \lambda_i u_i = 0$, and
 - (b) $\sum_{i=1}^{m} \lambda_i(u_i u_i^T) = I_n$.
- (b) implies $\sum_{i=1}^{m} \lambda_i = n$.





For $C \in \mathcal{K}^n$ and c_J the center of $\mathcal{E}_J(C)$:

$$(\mathcal{E}_J(C)-c_J)\subset (C-c_J)\subset \mathbf{n}\cdot (\mathcal{E}_J(C)-c_J).$$

For $C \in \mathcal{K}^n$ and c_J the center of $\mathcal{E}_J(C)$:

$$(\mathcal{E}_J(C)-c_J)\subset (C-c_J)\subset \mathbf{n}\cdot (\mathcal{E}_J(C)-c_J).$$

For *C* simplex: *n* smallest possible factor

For $C \in \mathcal{K}^n$ and c_J the center of $\mathcal{E}_J(C)$:

$$(\mathcal{E}_{J}(C)-c_{J})\subset (C-c_{J})\subset \mathbf{n}\cdot (\mathcal{E}_{J}(C)-c_{J}).$$

For *C* simplex: *n* smallest possible factor

For *C* symmetric: \sqrt{n} suffices

For $C \in \mathcal{K}^n$ and c_J the center of $\mathcal{E}_J(C)$:

$$(\mathcal{E}_J(C)-c_J)\subset (C-c_J)\subset \mathbf{n}\cdot (\mathcal{E}_J(C)-c_J).$$

For C simplex: n smallest possible factor

For C symmetric: \sqrt{n} suffices

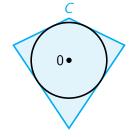
$$d_{BM}(C, \mathbb{B}_2^n) \le \begin{cases} \sqrt{n} & \text{, if } C \text{ is symmetric} \\ n & \text{, else.} \end{cases}$$

Definition

The John asymmetry of $C \in \mathcal{K}^n$ is

$$s_J(C) := \min\{\rho \geq 0 : (C - c_J) \subset \rho(c_J - C)\},$$

where c_J is the center of $\mathcal{E}_J(C)$.

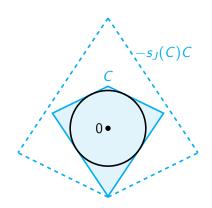


Definition

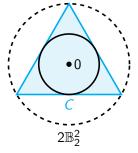
The John asymmetry of $C \in \mathcal{K}^n$ is

$$s_J(C) \coloneqq \min\{\rho \ge 0 : (C - c_J) \subset \rho(c_J - C)\},$$

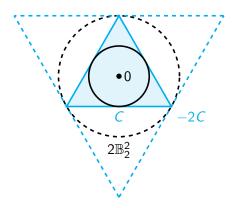
where c_J is the center of $\mathcal{E}_J(C)$.



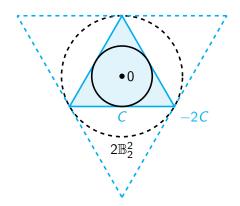
• $1 \le s_J(C) \le n$ by John's theorem,



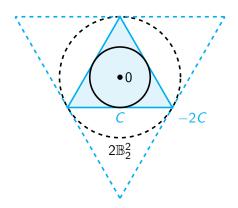
• $1 \le s_J(C) \le n$ by John's theorem,



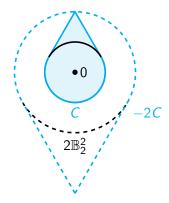
- $1 \le s_J(C) \le n$ by John's theorem,
- $s_J(C) = 1 \iff C$ is symmetric,



- $1 \le s_J(C) \le n$ by John's theorem,
- $s_J(C) = 1 \iff C$ is symmetric,
- $s_J(C) = n$ is reached for simplices, but not uniquely.



- $1 \le s_J(C) \le n$ by John's theorem,
- $s_J(C) = 1 \iff C$ is symmetric,
- $s_J(C) = n$ is reached for simplices, but not uniquely.



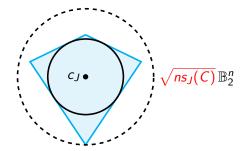
Theorem (Brandenberg, König, 2013)

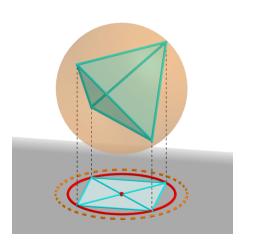
For $C \in \mathcal{K}^n$ and c_J the center of $\mathcal{E}_J(C)$:

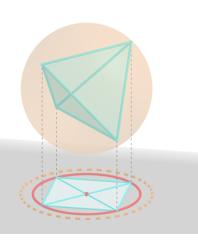
$$(\mathcal{E}_J(C) - c_J) \subset (C - c_J) \subset \sqrt{ns_J(C)} (\mathcal{E}_J(C) - c_J).$$

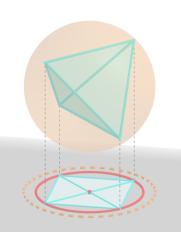
This bound is best possible for all values $s_J(C) \in [1, n]$.

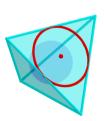
In particular $d_{BM}(K, \mathbb{B}_2^n) \leq \sqrt{ns_J(C)}$.

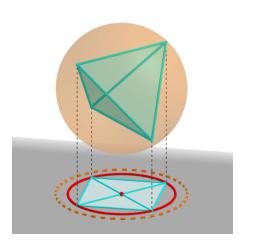


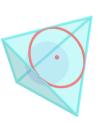












C|F orthogonal projection of $C \in \mathcal{K}^n$ onto $F \subset \mathbb{R}^n$ linear k-space

Theorem (BG, 2024+)

For $C \in \mathcal{K}^n$ with $\mathcal{E}_L(C) = \mathbb{B}_2^n$ and $F \subset \mathbb{R}^n$ linear k-space:

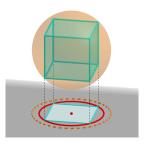
$$\operatorname{vol}_k(\mathcal{E}_L(C|F)) \ge \operatorname{vol}_k\left(\sqrt{\frac{k}{n}}\mathbb{B}_2^k\right).$$

Equality holds if and only if $\mathcal{E}_L(C|F) = \sqrt{\frac{k}{n}} \mathbb{B}_2^n |F|$.

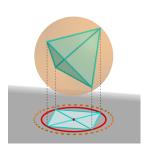
Equality holds for appropriate k-spaces e.g. if C is



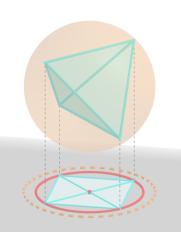
a cross-polytope

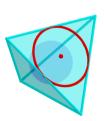


a cube



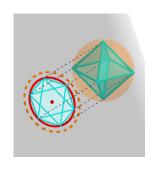
an n-simplex (unless n even and $k \in \{1, n-1\}$)

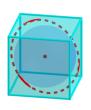




Polar of $C \in \mathcal{K}^n$ with $0 \in \text{int}(C)$:

$$C^{\circ} = \{ a \in \mathbb{R}^n : a^T x \leq 1 \text{ for all } x \in C \} \in \mathcal{K}^n.$$





$$\mathcal{E}_L(C^\circ) = \mathbb{B}_2^n$$

 \iff

$$\mathcal{E}_J(C) = \mathbb{B}_2^n$$

 $E^{\circ} \supset C^{\circ}$ cylinder with k-ellipsoidal base

 \iff

 $E \subset C$ *k*-ellipsoid with $0 \in \text{relint}(E)$

Corollary

For $C \in \mathcal{K}^n$ symmetric with $\mathcal{E}_J(C) = \mathbb{B}_2^n$ and $E \subset C$ a k-ellipsoid:

$$vol_k(E) \leq vol_k\left(\sqrt{\frac{n}{k}}\mathbb{B}_2^k\right).$$

Corollary

For $C \in \mathcal{K}^n$ symmetric with $\mathcal{E}_J(C) = \mathbb{B}_2^n$ and $E \subset C$ a k-ellipsoid:

$$vol_k(E) \leq vol_k\left(\sqrt{\frac{n}{k}}\mathbb{B}_2^k\right).$$

Theorem (Ball, 1992)

For $C \in \mathcal{K}^n$ with $\mathcal{E}_J(C) = \mathbb{B}_2^n$ and $E \subset C$ a k-ellipsoid:

$$\operatorname{vol}_k(E) \leq \operatorname{vol}_k\left(\sqrt{rac{n(n+1)}{k(k+1)}}\mathbb{B}_2^k
ight).$$

Equality holds if E is the inscribed k-ball of a k-face of a regular simplex.

Theorem (BG, 2024+)

For $C \in \mathcal{K}^n$ with $\mathcal{E}_J(C) = \mathbb{B}_2^n$ and $E \subset C$ a k-ellipsoid:

$$vol_k(E) \leq vol_k\left(\sqrt{\frac{n}{k}} \cdot \underbrace{\min\left\{\frac{n+1}{k+1}, \frac{s_J(C)+1}{2}\right\}}_{=: m(s_J(C))} \mathbb{B}_2^k\right).$$

Equality holds if and only if E is a k-ball of radius $\sqrt{\frac{n}{k} \cdot m(s_J(C))}$.

Theorem (BG, 2024+)

For $C \in \mathcal{K}^n$ with $\mathcal{E}_I(C) = \mathbb{B}_2^n$ and $E \subset C$ a k-ellipsoid:

$$vol_k(E) \leq vol_k\left(\sqrt{\frac{n}{k}} \cdot \underbrace{\min\left\{\frac{n+1}{k+1}, \frac{s_J(C)+1}{2}\right\}}_{=: m(s_J(C))} \mathbb{B}_2^k\right).$$

Equality holds if and only if E is a k-ball of radius $\sqrt{\frac{n}{k} \cdot m(s_J(C))}$.

In the equality case:

Theorem (BG, 2024+)

For $C \in \mathcal{K}^n$ with $\mathcal{E}_J(C) = \mathbb{B}_2^n$ and $E \subset C$ a k-ellipsoid:

$$vol_k(E) \leq vol_k\left(\sqrt{\frac{n}{k}} \cdot \underbrace{\min\left\{\frac{n+1}{k+1}, \frac{s_J(C)+1}{2}\right\}}_{=: m(s_J(C))} \mathbb{B}_2^k\right).$$

Equality holds if and only if E is a k-ball of radius $\sqrt{\frac{n}{k} \cdot m(s_J(C))}$.

In the equality case:

• The center c of E is perp. to aff(E) with $||c|| = \sqrt{n \cdot (m(s_J(C)) - 1)}$.

For $C \in \mathcal{K}^n$ with $\mathcal{E}_J(C) = \mathbb{B}_2^n$ and $E \subset C$ a k-ellipsoid:

$$vol_k(E) \leq vol_k\left(\sqrt{\frac{n}{k}} \cdot \underbrace{\min\left\{\frac{n+1}{k+1}, \frac{s_J(C)+1}{2}\right\}}_{=: m(s_J(C))} \mathbb{B}_2^k\right).$$

Equality holds if and only if E is a k-ball of radius $\sqrt{\frac{n}{k} \cdot m(s_J(C))}$.

In the equality case:

- The center c of E is perp. to aff(E) with $||c|| = \sqrt{n \cdot (\mathsf{m}(s_J(C)) 1)}$.
 - For $u_1, ..., u_m$ from John's theorem: $c^T u_i \in \{1, 1 \mathsf{m}(s_J(C))\}.$

For $C \in \mathcal{K}^n$ with $\mathcal{E}_J(C) = \mathbb{B}_2^n$ and $E \subset C$ a k-ellipsoid:

$$vol_k(E) \leq vol_k\left(\sqrt{\frac{n}{k}} \cdot \underbrace{\min\left\{\frac{n+1}{k+1}, \frac{s_J(C)+1}{2}\right\}}_{=: m(s_J(C))} \mathbb{B}_2^k\right).$$

Equality holds if and only if E is a k-ball of radius $\sqrt{\frac{n}{k}} \cdot m(s_J(C))$.

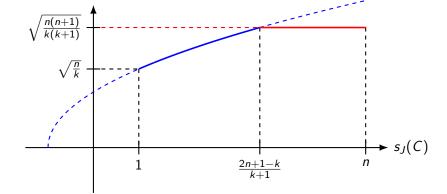
This inequality is best possible if and only if $s_J(C) \notin (1, 1 + \frac{2}{n})$.

In the equality case:

- The center c of E is perp. to aff(E) with $||c|| = \sqrt{n \cdot (\mathsf{m}(s_J(C)) 1)}$.
 - For $u_1, ..., u_m$ from John's theorem: $c^T u_i \in \{1, 1 \mathsf{m}(s_J(C))\}.$

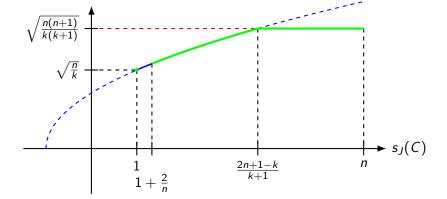
$$vol_k(E) \le vol_k\left(\sqrt{\frac{n}{k} \cdot \frac{n+1}{k+1}} \mathbb{B}_2^k\right)$$

 $vol_k(E) \leq vol_k\left(\sqrt{rac{n}{k} \cdot rac{s_J(C)+1}{2}} \mathbb{B}_2^k\right)$



$$vol_k(E) \le vol_k\left(\sqrt{\frac{n}{k} \cdot \frac{n+1}{k+1}} \mathbb{B}_2^k\right)$$

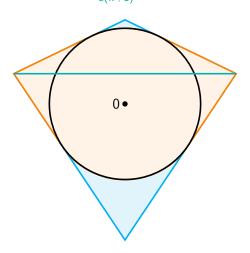
$$vol_k(E) \le vol_k\left(\sqrt{\frac{n}{k} \cdot \frac{s_J(C)+1}{2}}\mathbb{B}_2^k\right)$$

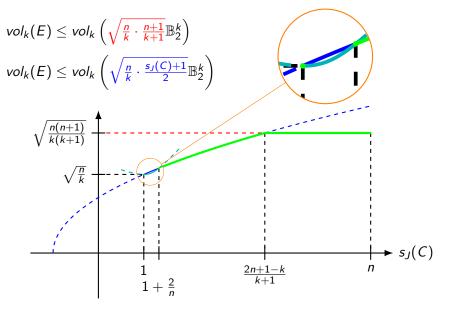


Best we know for $s_J \in (1, 1 + \frac{2}{n})$:

There exists $C \in \mathcal{K}^n$ with $\mathcal{E}_J(C) = \mathbb{B}^n$ and $s_J(C) = s_J$:

$$\sqrt{\frac{n}{k}} \cdot \frac{4(k(s_J+1)+1)+n(s_J-1)^2+n\sqrt{((s_J-1)(s_J+3)-\frac{4}{n})^2+8(1+\frac{2}{n}-s_J)(s_J^2-1)\frac{n-k}{n}}}{8(k+1)} \mathbb{B}_2^k \subseteq_t C$$





For $C \in \mathcal{K}^2$ with $\mathcal{E}_J(C) = \mathbb{B}_2^2$ and $x, y \in C$:

$$\underbrace{\|x-y\|}_{= \text{vol}_1([x,y])} \leq \underbrace{\sqrt{s_J(C)^2 + 5 + \sqrt{4(2-s_J(C))^2 + (s_J(C)^2 - 1)^2}}}_{=: d(s_J(C))}.$$

For $C \in \mathcal{K}^2$ with $\mathcal{E}_J(C) = \mathbb{B}_2^2$ and $x, y \in C$:

$$\underbrace{\|x-y\|}_{= \text{vol}_1([x,y])} \leq \underbrace{\sqrt{s_J(C)^2 + 5 + \sqrt{4(2-s_J(C))^2 + (s_J(C)^2 - 1)^2}}}_{=: d(s_J(C))}.$$

Any
$$x, y \in C$$
 with $||x - y|| = d(s_J(C))$ satisfy

For $C \in \mathcal{K}^2$ with $\mathcal{E}_J(C) = \mathbb{B}_2^2$ and $x, y \in C$:

$$\underbrace{\|x-y\|}_{= \text{vol}_1([x,y])} \leq \underbrace{\sqrt{s_J(C)^2 + 5 + \sqrt{4(2-s_J(C))^2 + (s_J(C)^2 - 1)^2}}}_{=: d(s_J(C))}.$$

Any
$$x, y \in C$$
 with $||x - y|| = d(s_I(C))$ satisfy

•
$$\left\| \frac{x+y}{2} \right\| = \sqrt{\frac{d(s_J(C))^2}{4} - 2}$$
, and

For $C \in \mathcal{K}^2$ with $\mathcal{E}_J(C) = \mathbb{B}_2^2$ and $x, y \in C$:

$$\underbrace{\|x-y\|}_{= \text{vol}_1([x,y])} \leq \underbrace{\sqrt{s_J(C)^2 + 5 + \sqrt{4(2-s_J(C))^2 + (s_J(C)^2 - 1)^2}}}_{=: d(s_J(C))}.$$

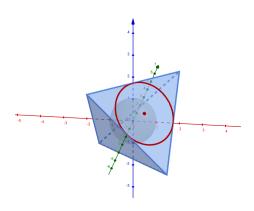
Any
$$x, y \in C$$
 with $||x - y|| = d(s_I(C))$ satisfy

- $\left\| \frac{x+y}{2} \right\| = \sqrt{\frac{d(s_J(C))^2}{4}} 2$, and
- $[0, \frac{x+y}{2}]$ is perpendicular to [x, y].

Thank you for your attention!

For $s_J \in \left[\frac{2n+1-k}{k+1}, n\right]$: $T \in \mathcal{K}^n \text{ a centered simplex, } C := T \cap (-s_J \cdot T),$

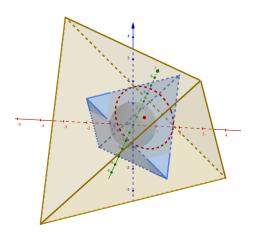
E inscribed *k*-ball of a facet of *T*



For $s_J \in \left[\frac{2n+1-k}{k+1}, n\right]$:

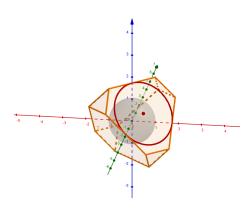
 $T \in \mathcal{K}^n$ a centered simplex, $C := T \cap (-s_J \cdot T)$,

E inscribed *k*-ball of a facet of *T*



For $s_J \in \left[\frac{2n+1-k}{k+1}, n\right]$: $T \in \mathcal{K}^n \text{ a centered simplex, } C := T \cap (-s_J \cdot T),$

E inscribed k-ball of a facet of T

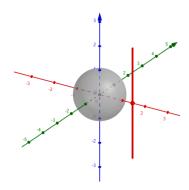


For
$$s_J \in \left[1 + \frac{2}{n}, \frac{2n+1-k}{k+1}\right]$$
:

(i)
$$E$$
 is a k -ball of radius $\sqrt{\frac{n}{k} \cdot \frac{s_j+1}{2}}$.

(ii) The center
$$c$$
 of E is perp. to $aff(E)$ with $||c|| = \sqrt{n \cdot \frac{s_j - 1}{2}}$.

(iii) For
$$u^1, ..., u^m$$
 from John's theorem: $c^T u^i \in \left\{1, \frac{1-s_J}{2}\right\}$.

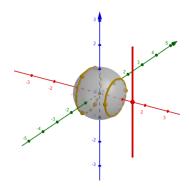


For
$$s_J \in \left[1 + \frac{2}{n}, \frac{2n+1-k}{k+1}\right]$$
:

(i)
$$E$$
 is a k -ball of radius $\sqrt{\frac{n}{k} \cdot \frac{s_j+1}{2}}$.

(ii) The center
$$c$$
 of E is perp. to $aff(E)$ with $||c|| = \sqrt{n \cdot \frac{s_J - 1}{2}}$.

(iii) For
$$u^1, ..., u^m$$
 from John's theorem: $c^T u^i \in \left\{1, \frac{1-s_J}{2}\right\}$.



For
$$s_J \in \left[1 + \frac{2}{n}, \frac{2n+1-k}{k+1}\right]$$
:

(i)
$$E$$
 is a k -ball of radius $\sqrt{\frac{n}{k} \cdot \frac{s_j+1}{2}}$.

(ii) The center
$$c$$
 of E is perp. to $aff(E)$ with $||c|| = \sqrt{n \cdot \frac{s_j - 1}{2}}$.

(iii) For
$$u^1, ..., u^m$$
 from John's theorem: $c^T u^i \in \left\{1, \frac{1-s_J}{2}\right\}$.

