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C € K™ if C C R" convex, compact, int(C) # 0

Theorem (John, 1948)

Any C € K" contains a unique volume-maximal ellipsoid £,(C)
(resp. is contained in a unique volume-minimal ellipsoid £, (C)).




C € K™ if C C R" convex, compact, int(C) # 0

Theorem (John, 1948)

Any C € K" contains a unique volume-maximal ellipsoid £,(C)
(resp. is contained in a unique volume-minimal ellipsoid £, (C)).

E)(C) =B (resp. £,(C) = BY) if and only if




C € K™ if C C R" convex, compact, int(C) # 0

Theorem (John, 1948)
Any C € K" contains a unique volume-maximal ellipsoid £,(C)
(resp. is contained in a unique volume-minimal ellipsoid £, (C)).
E)(C) =B (resp. £,(C) = BY) if and only if

(i) BY C C (resp. C C BY), and




C € K™ if C C R" convex, compact, int(C) # 0

Theorem (John, 1948)

Any C € K" contains a unique volume-maximal ellipsoid £,(C)
(resp. is contained in a unique volume-minimal ellipsoid £, (C)).

E)(C) =B (resp. £,(C) = BY) if and only if

(i) BY C C (resp. C C BY), and
(i) Ju1,...,um € bd(BS) N bd(C) and A1, ..., Am > 0 s.t.




C € K™ if C C R" convex, compact, int(C) # 0

Theorem (John, 1948)
Any C € K" contains a unique volume-maximal ellipsoid £,(C)
(resp. is contained in a unique volume-minimal ellipsoid ).
E;(C) = BY (resp. ) if and only if

(i) Bf C C (resp. C C 1#]), and

(i) Ju1,...,um € bd(BS) N bd(C) and A1, ..., Am > 0 s.t.

(a) > Aju; =0, and
i=1




C € K™ if C C R" convex, compact, int(C) # 0

Theorem (John, 1948)

Any C € K" contains a unique volume-maximal ellipsoid £,(C)
(resp. is contained in a unique volume-minimal ellipsoid ).

E;(C) = BY (resp. ) if and only if
(i) Bf C C (resp. C C 1#]), and
(i) Ju1,...,um € bd(BS) N bd(C) and A1, ..., Am > 0 s.t.
(a) f: Aiui =0, and
i=1

(b) i A(uuT) = .




C € K™ if C C R" convex, compact, int(C) # 0
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(resp. is contained in a unique volume-minimal ellipsoid ).
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(b) implies > A; = n.
i=1
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Corollary (John, 1948)

For C € K" and ¢ the center of £,(C):

(Es(C)—cy) C(C—cy)CTn-(E4(C) = cy).
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Corollary (John, 1948)

For C € K" and ¢ the center of £,(C):

(Es(C)—cy) C(C—cy)CTn-(E4(C) = cy).

For C simplex: n smallest possible factor

For C symmetric: +/n suffices

Ao (C.BY) < {ﬁ , if C is symmetric
BM y 02 ) =

n , else.



Definition
The John asymmetry of C € K" is

s)(C) =min{p>0:(C—cy) Cp(c;— C)},

where ¢ is the center of £,(C).
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Theorem (Brandenberg, Konig, 2013)
For C € K" and ¢, the center of £,(C):

(€4(C) —cy) € (C—cy) C Vnsy(C) (E4(C) — cy).
This bound is best possible for all values s;(C) € [1, n].

In particular dgpm(K,B3) < \/ns;(C).



















C|F orthogonal projection of C € K" onto F C R” linear k-space

Theorem (BG, 2024+)
For C € K" with £, (C) = ] and F C R" linear k-space:

voli (£,(C|F)) > volg <\/EIB%’2‘> :

Equality holds if and only if £, (C|F) = [B”]F




Equality holds for appropriate k-spaces e.g. if C is

a cross-polytope a cube an n-simplex

(unless n even and
ke{l,n—1})






Polar of C € K" with 0 € int(C):

C°={acR":a'x<1forall xe C} K"

£.(C°) =BE PR £,(C) =B

E° D C° cylinder with E C C k-ellipsoid with
k-ellipsoidal base 0 € relint(E)



For C € K" symmetric with £,(C) =B and E C C a k-ellipsoid:

voli(E) < voly (\/Z]B%’Q‘) .




For C € K" symmetric with £,(C) =B and E C C a k-ellipsoid:

vol(E) < voly (\/Z]B%’g) .

Theorem (Ball, 1992)
For C € K" with £,(C) = Bj and E C C a k-ellipsoid:

VO/k(E) < VO/k ( n(n+ 1)Bk> .

k(k+1)72

Equality holds if E is the inscribed k-ball of a k-face of a regular simplex.

v
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Theorem (BG, 2024+)
For C € K" with £,(C) =Bj and E C C a k-ellipsoid:

1 C)+1
vo/k(E)gvolk<\/z.min{errl7SJ( 2)+ }Eé) .

=:m(s;(C))

Equality holds if and only if E is a k-ball of radius /7 - m(s,(C)).

This inequality is best possible if and only if s,(C) ¢ (1,1 + 2).

In the equality case:

@ The center c of E is perp. to aff(E) with ||c|| = v/n- (m(s;(C)) — 1).

e For uy, ..., uy, from John's theorem: c"u; € {1,1 —m(s,(C))}.
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Best we know for s; € (1, 1+ %)
There exists C € K" with £,(C) =B" and s;(C) = st

/

4(1<(sj+1)+1)+n(sj—1)2+n\/((SJ_1)(5J+3)—%)2+8(1+%—5J)(s2_1)";k B
’ 8(k+1) : By Ce €

X3

Qe



2n+1—k
k+1

QYIRS

n(n+1)
k(k+1)




Theorem (BG, 2024+)
For C € K2 with £,(C) =B3 and x,y € C:

Ix—yl < WCV 54 1/4(2 - (€))% + (sy(C) — 1)2.

= voli([x, y]) =: d(s,(C))

This bound is best possible for all values s;(C) € [1,2].
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Theorem (BG, 2024+)
For C € K2 with £,(C) =B3 and x,y € C:

Ix—yl < WCV 54 1/4(2 - (€))% + (sy(C) — 1)2.

= voli([x, y]) =: d(s,(C))

This bound is best possible for all values s;(C) € [1,2].

Any x,y € C with ||x — y|| = d(s;(C)) satisfy

o 5 = V/EADE 2, ang

e [0, %] is perpendicular to [x, y].



Thank you for your attention!



For s, € [%, n]:
T € K" a centered simplex, C .= T N(—s,-T),

E inscribed k-ball of a facet of T
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k+1
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(i) The center c of E is perp. to aff(E) with |[c|| =4/n- 5=,
1—s
(iii) For u*,...,u™ from John's theorem: ¢’ {1 5 J}
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