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A well known exercise

Given a hexagonal dart board of side length
√
3, where 25 darts have

landed, show that there exists a circle with radius 1 which covers at least
5 of the darts.
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3, where 25 darts have

landed, show that there exists a circle with radius 1 which covers at least
5 of the darts.

Coincidentally In the 2023 Bulgarian Math Olympiad they had the
following problem:

Let N be the largest integer such that in any diameter 1 set of 3n points
we can cover at least N of them with a circle with radius r . Prove that
there exists an ϵ > 0 (depending on n) such that the value of N does not
depend on r in the interval r ∈ (12 − ϵ, 12).
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Generalized Dart Board Problem

1 Hexagonal dart board of side length
√
3 −→ diameter one point-set

2 25 darts landed −→ n darts (points) landed
3 circle of radius 1 −→ circle of radius 0 < r ≤ 1
4 Containing at least 5 −→ containing at least k

Problem (Generalization of the hexagonal dart board problem)

Let n be a fixed positive integer. Let Pn be the family of all sets of n
points, so that in any set, the distance between any two points is at most
1. Let the function value Nn(r) (0 < r ≤ 1) be the largest integer k so
that for every point set P ∈ Pn there exists a circle of radius r which
covers at least k points in P.

We especially want to know what happens as n gets large. Let

c(r) := lim
n→∞

Nn(r)

n
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Getting used to the notation

Remark 1:

Using our notation and scaling the original hexagonal dart
board problem, we see:

N25(
1
3) ≥ 5

In fact, Ruyle showed that both N21(
1
3) ≥ 5 and N16(

1
3) ≤ 4.

It would be interesting to know the minimum n such that Nn(
1
3) ≥ 5.

Remark 2:

The Bulgarian 2023 Math Olympiad problem can be phrased
with this notation as:

N3n(r) = n on the interval r ∈ (12 − ϵ, 12).

This implies that c(r) = 1
3 on this interval. We will see that this is

true on a much larger interval!
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Jung’s Theorem

Theorem (Jung’s Theorem (planar version))

Every diameter d point set can be covered by a circle of radius r ≤ d√
3
.

This implies
Nn(r) = n and c(r) = 1

for any r ∈ [ 1√
3
, 1].
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Finding lower bounds for Nn(r) and c(r)

The Strategy:

1 Find a shape S which covers all diameter one point-sets. These are
called universal covers.

2 Find a covering of S with k circles of radius r
3 By pigeonhole principal this implies Nn(r) ≥ ⌈ nk ⌉ and c(r) ≥ 1

k

[Borsuk] proved that a hexagon whose opposite sides are distance 1 apart

form a universal cover. For example, a visual proof of Nn

(√
13
48

)
≥ ⌈n2⌉

1
2

1
4
√
3

1√
3

1
2
√
3

r =
√
13
48 = 0.52..

Owen Henderschedt Joint work with András Bezdek
On the number of points a given circle can cover from a diameter one finite point set 7 / 17



Finding lower bounds for Nn(r) and c(r)

The Strategy:
1 Find a shape S which covers all diameter one point-sets. These are

called universal covers.

2 Find a covering of S with k circles of radius r
3 By pigeonhole principal this implies Nn(r) ≥ ⌈ nk ⌉ and c(r) ≥ 1

k

[Borsuk] proved that a hexagon whose opposite sides are distance 1 apart

form a universal cover. For example, a visual proof of Nn

(√
13
48

)
≥ ⌈n2⌉

1
2

1
4
√
3

1√
3

1
2
√
3

r =
√
13
48 = 0.52..

Owen Henderschedt Joint work with András Bezdek
On the number of points a given circle can cover from a diameter one finite point set 7 / 17



Finding lower bounds for Nn(r) and c(r)

The Strategy:
1 Find a shape S which covers all diameter one point-sets. These are

called universal covers.
2 Find a covering of S with k circles of radius r

3 By pigeonhole principal this implies Nn(r) ≥ ⌈ nk ⌉ and c(r) ≥ 1
k

[Borsuk] proved that a hexagon whose opposite sides are distance 1 apart

form a universal cover. For example, a visual proof of Nn

(√
13
48

)
≥ ⌈n2⌉

1
2

1
4
√
3

1√
3

1
2
√
3

r =
√
13
48 = 0.52..

Owen Henderschedt Joint work with András Bezdek
On the number of points a given circle can cover from a diameter one finite point set 7 / 17



Finding lower bounds for Nn(r) and c(r)

The Strategy:
1 Find a shape S which covers all diameter one point-sets. These are

called universal covers.
2 Find a covering of S with k circles of radius r
3 By pigeonhole principal this implies Nn(r) ≥ ⌈ nk ⌉ and c(r) ≥ 1

k

[Borsuk] proved that a hexagon whose opposite sides are distance 1 apart

form a universal cover. For example, a visual proof of Nn

(√
13
48

)
≥ ⌈n2⌉

1
2

1
4
√
3

1√
3

1
2
√
3

r =
√
13
48 = 0.52..

Owen Henderschedt Joint work with András Bezdek
On the number of points a given circle can cover from a diameter one finite point set 7 / 17



Finding lower bounds for Nn(r) and c(r)

The Strategy:
1 Find a shape S which covers all diameter one point-sets. These are

called universal covers.
2 Find a covering of S with k circles of radius r
3 By pigeonhole principal this implies Nn(r) ≥ ⌈ nk ⌉ and c(r) ≥ 1

k

[Borsuk] proved that a hexagon whose opposite sides are distance 1 apart

form a universal cover. For example, a visual proof of Nn

(√
13
48

)
≥ ⌈n2⌉

1
2

1
4
√
3

1√
3

1
2
√
3

r =
√
13
48 = 0.52..

Owen Henderschedt Joint work with András Bezdek
On the number of points a given circle can cover from a diameter one finite point set 7 / 17



Finding lower bounds for Nn(r) and c(r)

The Strategy:
1 Find a shape S which covers all diameter one point-sets. These are

called universal covers.
2 Find a covering of S with k circles of radius r
3 By pigeonhole principal this implies Nn(r) ≥ ⌈ nk ⌉ and c(r) ≥ 1

k

[Borsuk] proved that a hexagon whose opposite sides are distance 1 apart

form a universal cover. For example, a visual proof of Nn

(√
13
48

)
≥ ⌈n2⌉

1
2

1
4
√
3

1√
3

1
2
√
3

r =
√
13
48 = 0.52..

Owen Henderschedt Joint work with András Bezdek
On the number of points a given circle can cover from a diameter one finite point set 7 / 17



A quick aside on universal covers

The Lebesgue’s universal covering problem is an open problem to find
the convex shape of smallest area which covers every planar diameter 1
set.

1 1901 Jung’s Theorem circle: Area ≈ 1.047

2 1920 Pál, Borsuk regular hexagon: Area ≈ 0.866

3 1920 Pál dodecagon: ≈ 0.84529946

4 1936 Sprague hexagon with cut: = 0.844137708436

5 1992 Hanson hexagon with more cuts = 0.844137708398

6 2015 Baez, Bagdasaryan, Egan, Gibbs computer = 0.8441153

“...it does seem safe to guess that progress on [this problem], which has
been painfully slow in the past, may be even more painfully slow in the
future.” Klee and Wagon
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6 2015 Baez, Bagdasaryan, Egan, Gibbs computer = 0.8441153

“...it does seem safe to guess that progress on [this problem], which has
been painfully slow in the past, may be even more painfully slow in the
future.” Klee and Wagon
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Finding lower bounds for Nn(r) and c(r)

k = 7

Nn(0.25) ≥ ⌈n7⌉

k = 8 k = 9 k = 10

Nn(0.230) ≥ ⌈n8⌉ Nn(0.217) ≥ ⌈n9⌉ Nn(0.209) ≥ ⌈ n
10⌉

1

k = 3
Nn(0.433) ≥ ⌈n3⌉

k = 4 k = 5 k = 6
Nn(0.366) ≥ ⌈n4⌉ Nn(0.321) ≥ ⌈n5⌉ Nn(0.288) ≥ ⌈n6⌉

1

Work of: Y. Liu 2022
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Finding upper bounds for Nn(r) and c(r)

The Strategy: Find creative examples of diameter one point sets which
make it challenging for a circle of radius r to cover lots of points.

Example 1: Example 2:

1

11

1
2

Implications:

Ex 1: Nn(r) ≤ ⌈n3⌉ on r ∈ (0, 12) and Nn(r) ≤ ⌈2n3 ⌉ on r ∈ [12 ,
1√
3
)

Ex 2: Nn(r) ≤ ⌈ n
π sin−1(2r)⌉ for r ∈ (0, 12)
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Current knowledge of Nn(r) and c(r)
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Current knowledge of Nn(r) and c(r)

0

c(r)

1

1
3

1
4

A

1
2

3
5

2
3

· · ·

E

H

G

B
c

d

F

I

1
7

1

r
.433 .5.25 .354 .518 .577.52

b

Owen Henderschedt Joint work with András Bezdek
On the number of points a given circle can cover from a diameter one finite point set 12 / 17



When r = 1
4

Theorem

Nn(
1
4) = ⌈n7⌉ for n ̸= 7 and N7(

1
4) = 2. Moreover, c(14) =

1
7 .
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When r = 1
2
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When r = 1
2
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Warning: n points are
not spaced at equal dis-
tances.
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When r = 1
2

Theorem

n ≤ N3n(
1
2) ≤ n + 1 and moreover c(12) =

1
3 .
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When r = 1
2

Theorem

n ≤ N3n(
1
2) ≤ n + 1 and moreover c(12) =

1
3 .
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A note on Borsuk’s Theorem

Theorem (Borsuk)

Any diameter one set can be partitioned into three pieces of strictly
smaller diameter.

Owen Henderschedt Joint work with András Bezdek
On the number of points a given circle can cover from a diameter one finite point set 15 / 17



A note on Borsuk’s Theorem

Theorem (Borsuk)

Any diameter one set can be partitioned into three pieces of strictly
smaller diameter.

Borsuk first bounded the diameter 1 set with three strips of width 1,
120 degrees apart. And used continues motion to get to the regular
hexagon and then computed the diameters.
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In 2010 D. Yang, a participant in the Math in Moscow program and
found a short elegant proof eliminated continues motion by just
computing the diameter of the pentagons formed from dropping the
perpendiculars from the shorter sided.
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Any diameter one set can be partitioned into three pieces of strictly
smaller diameter.

Borsuk first bounded the diameter 1 set with three strips of width 1,
120 degrees apart. And used continues motion to get to the regular
hexagon and then computed the diameters.

In 2010 D. Yang, a participant in the Math in Moscow program and
found a short elegant proof eliminated continues motion by just
computing the diameter of the pentagons formed from dropping the
perpendiculars from the shorter sided.

By dropping the other perpendiculars too we can see a nice proof
without words!
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A note on Borsuk’s Theorem

1

1 1

d1 d2

Remark on Borsuk’s theorem: d1 + d2 = 2

Proof:
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Open Questions

1 What is the correct answer: N3n(
1
2) ∈ {n, n + 1}?

2 Does the graph of c(n) follow a step function?

3 Is there an r such that Nn(r) =
1
2?

4 Is Nn(r) =
1
7 for r ∈ (14 − ϵ, 14 + ϵ) ?
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Thank you

Questions!?
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