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John Ellipsoid Theorem

John Ellipsoid Theorem due to Fritz John from 1948 is a fundamental
result of convex geometry and functional analysis. It gives an important
characterization of an ellipsoid of maximal volume contained in a given
symmetric convex body K (called shortly the John ellipsoid of K ). The
theorem characterizes the John ellipsoid in terms of the contact points of
boundaries of K and the John ellipsoid.
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John Ellipsoid Theorem

John Ellipsoid Theorem. Let K ⊆ Rn be a symmetric convex body. Then
the Euclidean unit ball Bn is the maximal volume ellipsoid contained in K
if and only if there exist contact points u1, u2, . . . , uN ∈ bd(K ) ∩ bd(Bn)
and weights λ1, λ2, . . . , λN > 0 such that for every x ∈ Rn we have

x =
N∑
i=1

λi ⟨x , ui ⟩ui .

Such a decomposition of the identity is called the John’s decomposition.
Obviously every symmetric convex body K can be linearly transformed so
that Bn is its John ellipsoid. Moreover, a minimal volume ellipsoid
containing K (called Loewner ellipsoid) is also always unique and the
John’s decomposition exists also for the contact point of this ellipsoid. It is
easy to see that the Loewner ellipsoid is a polar (dual) to John ellipsoid.
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Approximation by the John ellipsoid

While the John ellipsoid theorem has many important applications in fields
of functional analysis and convex geometry, our point of departure is its
classical corollary about the approximation of a convex body by its John
ellipsoid.

Corollary of John’s Theorem. Let K ⊆ Rn be a symmetric convex body
and let E ⊆ K be its John ellipsoid. Then K ⊆

√
nE .

Proof. By applying a suitable linear transformation we can assume that
E = Bn is the Euclidean unit ball. It is enough to check that for every
x ∈ K we have ∥x∥ ≤

√
n.

Tomasz Kobos (UJ) Symmetric convex bodies with the maximal Banach-Mazur distance to the Euclidean ball in dimensions two and threeJuly 3, 2024 4 / 22



Approximation by the John ellipsoid

While the John ellipsoid theorem has many important applications in fields
of functional analysis and convex geometry, our point of departure is its
classical corollary about the approximation of a convex body by its John
ellipsoid.

Corollary of John’s Theorem. Let K ⊆ Rn be a symmetric convex body
and let E ⊆ K be its John ellipsoid. Then K ⊆

√
nE .

Proof. By applying a suitable linear transformation we can assume that
E = Bn is the Euclidean unit ball. It is enough to check that for every
x ∈ K we have ∥x∥ ≤

√
n.

Tomasz Kobos (UJ) Symmetric convex bodies with the maximal Banach-Mazur distance to the Euclidean ball in dimensions two and threeJuly 3, 2024 4 / 22



Approximation by the John ellipsoid

While the John ellipsoid theorem has many important applications in fields
of functional analysis and convex geometry, our point of departure is its
classical corollary about the approximation of a convex body by its John
ellipsoid.

Corollary of John’s Theorem. Let K ⊆ Rn be a symmetric convex body
and let E ⊆ K be its John ellipsoid. Then K ⊆

√
nE .

Proof. By applying a suitable linear transformation we can assume that
E = Bn is the Euclidean unit ball. It is enough to check that for every
x ∈ K we have ∥x∥ ≤

√
n.

Tomasz Kobos (UJ) Symmetric convex bodies with the maximal Banach-Mazur distance to the Euclidean ball in dimensions two and threeJuly 3, 2024 4 / 22



Approximation by the John ellipsoid

However, by the John’s decomposition applied for x ∈ K we have

⟨x , x⟩ =
N∑
i=1

λi ⟨x , ui ⟩2 ≤
N∑
i=1

λi = n,

where we have used that |⟨x , ui ⟩| ≤ 1 for every 1 ≤ i ≤ N, as ui ∈ K ◦.
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The Banach-Mazur distance

This estimate with
√
n is fundamental in the theory of Banach-Mazur

distance. Originally introduced by Banach in 1932 it serves the purpose of
comparing the geometric properties of two normed spaces and quantifies
how essentially different the spaces are. For two normed spaces X ,Y of
dimension n there Banach-Mazur distance is defined as

dBM(X ,Y ) = inf ∥T∥ · ∥T−1∥,

where infimum is taken over all invertible operators T : X → Y .
Similarly we can define a Banach-Mazur distance between two symmetric
convex bodies K , L ⊆ Rn. In this case

dBM(K , L) = inf{r > 0 : K ⊆ T (L) ⊆ rK}.

with the infimum taken again over all invertible linear operators
T : Rn → Rn.
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The Banach-Mazur distance

The estimate with
√
n reads now simply as dBM(K ,Bn) ≤

√
n. This

estimate is fundamental, as for example, when combined with the triangle
inequality, it yields that dBM(K , L) ≤ n for any two symmetric convex
bodies K , L ⊆ Rn. In other words, the diameter of the Banach-Mazur
compactum is upper bounded by n. It was later proved by Gluskin by a
famous probabilistic construction, that the diameter can be lower bounded
by cn for some absolute constant c > 0. Thus, the diameter of the
symmetric Banach-Mazur compactum is of a linear order.
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Characterization of the maximal distance

Because the inequality dBM(K ,Bn) ≤
√
n for a symmetric convex body

K ⊆ Rn is fundamental, it is very natural to ask, when the equality holds.
In other words, what are the symmetric convex bodies with the maximal
possible distance to the Euclidean unit ball? Let us remark here, that in
case of K being a non-symmetric convex body it is possible to prove
(again using the John’s decomposition) that dBM(K ,Bn) ≤ n. In this case,
it is known that if the equality holds, then K has to be a simplex in Rn.
Moreover, this uniqueness of simplex is stable , that is if
dBM(K ,Bn) ≥ n− ε, then dBM(K , Sn) ≤ 1 + cε2 for some constant c > 0.

It turns out that in the symmetric case, the situation is more complicated.
It is quite easy to prove that the n-dimensional cross-polytope and the
n-dimensional parallelotope (so the unit balls of ℓn1 and ℓn∞ respectively)
have the distance to the Euclidean unit ball equal to

√
n. But are they the

only ones?
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Characterization of the maximal distance

Generally, they are not the only ones. In every dimension n ≥ 4 there are
examples of n-dimensional symmetric convex bodies with the distance
equal to

√
n, which are not linearly equivalent to a parallelotope or a

cross-polytope. However, it was proved by Milman and Wolfson that any
normed space with the maximal distance has a subspace of a roughly
logarithmic dimension, which is isometric to ℓ1.

Therefore it is natural to ask, what happens then in the dimensions 2 and
3? While there are several papers related to the spaces with the maximal
distance to the Euclidean space, it is surprisingly hard to find any
information about these two cases. It turns out that in those dimensions,
the maximizers are only the obvious one. While the two-dimensional case
can be regarded as a simple exercise, the three-dimensional case is much
more challenging. There exists a strong indication that the proof of this
fact was known to some mathematicians, but it seems that the result was
never published.
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Historical background

While the two-dimensional characterization can be regarded as rather
simple with the current state of knowledge, already this case is not easily
established in the literature. It can be traced back to independent works of
John from 1936 and Behrend from 1937 (the latter available only in
German), where it is proved that dBM(K ,B2) ≤ dBM(P2,B2) =

√
2 for

any symmetric convex body K ⊆ R2, with equality if and only if K is a
parallelogram. Neither of them used the language of Banach-Mazur
distances and their proofs are somewhat convoluted from a modern point
of view. Their works preceded the John Ellipsoid Theorem, though during
the process of, Behrend has basically established the existence and
uniqueness of the John ellipse in the symmetric planar case along with the
estimate of

√
2.
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Historical background

It was noted also much later by Lewis in 1979 that the two-dimensional
case is a consequence of a more general result about Banach ideal norms.
Lewis attributed this observation to Figiel and Davis, so seemingly, he was
not aware of the previous works of John and Behrend. The three discussed
papers seem to be the only ones where some argument for the
two-dimensional case is given.
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Historical background

Concerning the three dimensional case, to our best knowledge, the only
information that can be found in the existing literature is the following
passage from the paper Structure of normed spaces with extremal distance
to the Euclidean space of Anisca, Tcaciuc, and Tomczak-Jaegermann from
2005:

“Some further properties of spaces with the maximal Euclidean distance
were known at the beginning of the 1990’s to several people working in the
area (Arias, Komorowski, Maurey and Tomczak-Jaegermann). In particular
they showed that spaces with the maximal Euclidean distance have a
unique distance ellipsoid, and that the only 3-dimensional spaces with the
maximal distance are the obvious ones, X = ℓ31 and X = ℓ3∞.”
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Unfortunately, no proof, reference, or even suggestion how to approach
proving such a fact is provided there. Furthermore, the authors refer to
another unpublished result, reportedly proved by Maurey, which states in
particular that if dBM(K ,Bn) =

√
n, then the distance ellipsoid of K is

unique. With such a result at hand, it would be quite simple to prove that
indeed P3 and C3 are, up to affine transformation, the only symmetric
convex bodies in R3 with the distance

√
3 to B3.

As almost two decades have passed since the paper of Anisca, Tcaciuc,
and Tomczak-Jaegermann, we revisit the forgotten case of n = 3. We were
able to confirm the claim from that paper, without relying on any
unpublished results. We actually do not use anything else than the basic
John Ellipsoid Theorem (in terms of referring to some external results).
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Mean of ellipsoids

One of the main ingredients is the lemma about combining different
distance ellipsoids, which can generally reduce the contact points.

Lemma about means of ellipsoids. Let K be a symmetric convex body
such that Bn ⊆ K ⊆ dBn for some d ≥ 1. Moreover, suppose that vectors
v1, ..., vn ∈ Rn form an orthonormal basis, α1, ..., αn > 0 are reals,
λ ∈ [0, 1] is a real parameter and the ellipsoid Eλ ⊆ Rn is defined as

Eλ =

{
x ∈ Rn :

n∑
i=1

⟨x , v i ⟩2

α2λ
i

≤ 1

}
.

Let V ⊆ Rn be a linear subspace spanned by all vectors v i such that
αi = 1. If E1 ⊆ K ⊆ dE1, then for every λ ∈ (0, 1) we have

(i) Eλ ⊆ K ⊆ dEλ,

(ii) bd(K ) ∩ bd(dEλ) ⊆ V ,

(iii) bd(K ) ∩ bd(Eλ) ⊆ V .
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Mean of ellipsoids

0

Figure: K (black), B2 (orange, solid), E (red, solid), E 1
2
(blue, solid). The dashed

ellipses are obtained from the solid ellipses by scaling with factor d ≈ 2. Neither
of the principal semi-axes of E has length 1, so bd(K ) is guaranteed to not
intersect bd(Eλ) and bd(dEλ) for any λ ∈ (0, 1).
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Main idea of the proof of the three-dimensional case

By applying a suitable linear transformation we can assume that B3 ⊆ K is
the John ellipsoid for K . Let us also take an ellipsoid E ⊆ R3 such that√
3E is the Loewner ellipsoid of K . A classical argument shows that

E ⊆ K (as the John’s decomposition exists also for Loewner ellipsoid) and
hence E ⊆ K ⊆

√
3E . Let us write E in the form

E =

{
x ∈ R3 :

3∑
i=1

⟨x , vi ⟩2

α2
i

≤ 1

}
,

where v1, v2, v3 is an orthonormal basis of R3 and α1, α2, α3 > 0. By
Lemma 1, the ellipsoid

F =

{
x ∈ R3 :

3∑
i=1

⟨x , vi ⟩2

αi
≤ 1

}

satisfies F ⊆ K ⊆
√
3F and bd(K ) ∩ (bd(F ) ∪ bd(

√
3F )) ⊆ V , where

V ⊆ R3 is a linear subspace spanned by all vectors v i such that αi = 1.
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Main idea of the proof of the three-dimensional case

We shall proceed by considering cases based on dimV .

The case dimV ≤ 1 is trivial, as in this case bd(K ) ∩ bd(F ) = ∅ or
bd(K ) ∩ bd(

√
3F ) = ∅, as K cannot have a common boundary point with

both F and
√
nF within the same line through the origin. Thus either

F ⊆ intK or K ⊆ int
√
3F , which gives us a contradiction with the

assumption dBM(K ,B3) =
√
3.

The case dimV = 3 is easy and it is a simple case work. In this case
E = B3, so the John and Loewner ellipsoids are homothetic. In particular,
there exists a John’s decomposition for the contact points of K and B3,
but also for the contact points of K and

√
3B3. Having these two John

decompositions at hand it is relatively easy to get that K must be a cube
or an octahedron.
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The case dimV ≤ 1 is trivial, as in this case bd(K ) ∩ bd(F ) = ∅ or
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The main work to do is therefore in the case dimV = 2. In this case the
crucial observation is the fact that there must exists two contact points
x , y ∈ bd(K ) ∩ bd(

√
3B3) ∩ V (such that x ̸= ±y) and that in this case

we have |⟨x , y⟩| ≤ 1. This allows to construct a linear perturbation of K ,
for which the distance of

√
3 to B3 is decreased.

Interestingly, this upper estimate of the inner-product of contact points by
1 seems to be a threshold, for which this idea of linear perturbation starts
to work. And this is exactly what can be deduced. In the n-dimensional
case the upper bound would be n − 2 and it is optimal as the case of the
n-dimensional cube shows.
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A counterexample in dimensions n ≥ 4

Generally the counterexamples for n ≥ 4 are known, although it is rather
difficult to establish in the literature an explicit example that works for all
dimensions n ≥ 4. One easy example, that covers all these dimensions is a
symmetric convex body arises from the n-dimensional cube by cutting a
symmetric pair of vertices by hyperplane (and a symmetric one). Clearly
the cube has the John decomposition from Bn supported on centers of
facets (as Bn is the John ellipsoid), but it has also another one supported
on the vertices (as

√
nBn is the Loewner ellipsoid). If n ≥ 4 then we can

throw out one pair of vertices and the John decomposition still persists. It
means that Bn and

√
nBn are still John/Loewner ellipsoids for this

modified cube. Now it is very easy to prove that if John/Loewner
ellipsoids of a given convex body are homothetic with ratio

√
n, then the

Banach-Mazur distance is equal to
√
n.
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Stability of the parallelogram

Knowing that the parallelogram is the unique planar, symmetric convex
body with the distance

√
2 to the Euclidean unit disc, it is natural to ask

about the stability of the parallelogram. We have the following result.

Stability Theorem. Let ε > 0 and let K ⊆ R2 be a symmetric convex
body such that dBM(K ,B2) ≥

√
2− ε. Then

dBM(K ,P2) ≤ 1 + cε,

where c = 10√
2
≈ 7.07.

Obviously the linear order in this estimate is best possible, as if K is any
convex body with dBM(K ,B2) =

√
2− ε, then by the triangle inequality

we obviously have dBM(K ,P2) ≥
√
2√

2−ε
≥ 1 + ε√

2
.
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Fun corollary

As a consequence we obtain the following.

Corollary.For every symmetric convex body K ⊆ R2 we have
dBM(K ,B2) < 1.363 or dBM(K ,P2) < 1.363.

It is interesting to note that the problem about covering the symmetric
Banach-Mazur compactum with balls centered at B2 and P2 has been
proposed during the open problem session of the workshop“Interplay
between Geometric Analysis and Discrete Geometry” that was held in 2023
in Mexico.

On the other hand, the unit ball of ℓ44 is of distance 4
√
2 ≈ 1.189 to both

B2 and P2.
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The end

Thank you for your attention!
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