Compositions of Sets in Geometric Ramsey Theory

Andrey Kupavskii

MIPT

Discrete Geometry Days

Budapest, 05.07.2024

Joint work with Nora Frankl, Arsenii Sagdeev and Dmitrii Zakharov

Ramsey Sets

For a set $X \subset \mathbb{R}^d$, the chromatic number $\chi(\mathbb{R}^n, X)$ is the minimum number of colors to color points of \mathbb{R}^n without a monochromatic isometric copy of X.

A set is Ramsey if $\chi(\mathbb{R}^n,X)\to\infty$ as $n\to\infty$

Erdős, Graham, Montgomery, Rothschild, Spencer, Straus, 1973: A set is Ramsey only if it is finite and spherical

Question (EGMRSS)/Conjecture (Graham):

Should it be iff?

Known Ramsey sets: pair of points, triangles, non-degenerate simplices, direct products of Ramsey sets, dodecahedron, icosahedron, 120-cell etc.

Exponentially Ramsey Sets

A set X is exponentially Ramsey if $\chi(\mathbb{R}^n, X) = (c + o(1))^n$ for some c > 1. What is the best c for different sets?

Raigorodskii, 2000: $\chi(\mathbb{R}^n,X) \geqslant (\psi+o(1))^n$ for a two-point X and $\psi=1.239...$

The case of unit triangles

Frankl and Rödl, 1987: unit triangles are exponentially Ramsey Sagdeev, 2019: $\chi(\mathbb{R}^n, \triangle) \ge (1.0140... + o(1))^n$ Naslund, 2020: $\chi(\mathbb{R}^n, \triangle) \ge (1.0144... + o(1))^n$

Theorem (AK, Sagdeev, Zakharov, 2023)

 $\chi(\mathbb{R}^n, \Delta) \ge (\psi^{1/2} + o(1))^n = (1.0742... + o(1))^n$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Exponentially Ramsey Sets

A set X is super-Ramsey if there exist C, c > 1 s.t. for any n there is a set V of size at most C^n s.t. $|V|/\alpha(V, X) > (c + o(1))^n$.

Theorem(Frankl and Rödl, 1990)

If X_1 and X_2 are super-Ramsey, then so is $X_1 \times X_2$.

How to get a bound for a unit simplex? via $\triangle^k \subset \Box^{k+1}$

'Original' Frankl and Rödl gives $\chi(\mathbb{R}^n, \Delta^k) \ge (1+2^{-2^{k+4}}+o(1))^n$. 'Product' Frankl and Rödl gives $\chi(\mathbb{R}^n, \Delta^k) \ge (1+\frac{1}{(k+1)^22^{k+1}}+o(1))^n$.

Theorem (AK, Sagdeev, Zakharov, 2023)

$$\chi(\mathbb{R}^n, \triangle^k) \ge \left(\psi^{1/(k+1)} + o(1)\right)^n \ge \left(1 + \frac{\psi}{k+1} + o(1)\right)^n$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Our approach: Tree-like concatenation

Lemma (Rainbow trees in large vertex sets)

 $G_i = (V, E_i), i \in [k]$ are graphs on the same vertex set. Fix a tree T with k ordered edges. Then in any $W \subset V$, $|W| > \alpha(G_1) + \ldots + \alpha(G_k)$, there exists a homomorphic copy of T in $G = (V, E_1 \cup \ldots \cup E_k)$ s.t. the image of the *i*-th edge belongs to E_i .

Proof: simple induction on the size of the tree.

Orthogonal trees

 $G'_i = (V_i, E'_i), i \in [k]$, be a family of k graphs, and $(u_i, w_i) \in E'_i, i \in [k]$. An orthogonal star:

 $\mathbf{w}_0 = (w_1, \dots, w_k), \ \mathbf{w}_1 = (u_1, w_2, \dots, w_k), \ \dots, \ \mathbf{w}_k = (w_1, \dots, w_{k-1}, u_k).$ An orthogonal path:

Orthogonal trees

 $G_i = (V_1 \times \cdots \times V_k, E_i), E_i = \{(\mathbf{x}, \mathbf{y}) : (x_i, y_i) \in E'_i, x_j = y_j \text{ for } j \neq i\}$

Lemma (Avoiding orthogonal stars/paths)

If $W \subset V_1 \times \cdots \times V_k$ contains no orthogonal stars (or no orthogonal paths), then

$$\frac{|W|}{|V_1 \times \dots \times V_k|} \leqslant \sum_{i=1}^k \frac{\alpha(G_i)}{|V_i|}.$$

Application to $\chi(\mathbb{R}^n, \triangle)$

k-semicross SC^k : $\{\mathbf{0},\mathbf{e}_1,\ldots,\mathbf{e}_k\}\subset\mathbb{R}^k$, where $\{\mathbf{e}_i\}$ is the standard basis

For $V \subset \mathbb{R}^n$, consider a unit distance graph G = (V, E): two points of V are connected iff they are at unit distance apart.

An orthogonal star in the Cartesian power V^k is isometric to SC^k . Thus

$$\alpha(V^k, \mathrm{SC}^k) \leq k|V|^{k-1}\alpha(V).$$

Substitute in the Lemma the set $A \subset \mathbb{R}^n$ giving the best bound for the ratio $|A|/\alpha(A)$ (where α is w.r.t. avoiding unit distances):

$$\chi(\mathbb{R}^{kn}, \mathrm{SC}^k) \ge \frac{|A|^k}{\alpha(A^k, \mathrm{SC}^k)} \ge \frac{|A|^k}{k|A|^{k-1}\alpha(A)} \ge (\psi_2 + o(1))^n.$$

Application to $\chi(\mathbb{R}^n, \triangle)$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Embed $\triangle^k \subset \mathrm{SC}^k$, instead of $\triangle^k \subset \Box^{k+1}$:

 $\chi(\mathbb{R}^n, \triangle^k)$ for k = k(n)

Best lower bound, Zakharov, 2023:

$$\chi \big(\mathbb{R}^n, \bigtriangleup^k \big) \geqslant c e^{c \sqrt{n/k}} \quad \text{ for some } c > 0$$

Best upper bound, Prosanov, 2018:

$$\chi(\mathbb{R}^n, \triangle^k) \leq (1 + \sqrt{2(k+1)/k} + o(1))^n$$

Question

For $\varepsilon > 0$, is there $k = k(\varepsilon)$ such that

$$\chi \left(\mathbb{R}^n, \bigtriangleup^k \right) \leqslant \left(1 + \varepsilon + o(1) \right)^n \text{ as } n \to \infty?$$

Weak sunflowers

A collection of $k \ge 3$ sets is called a weak k-sunflower if all their pairwise intersections are of the same cardinality.

 $G_k(n)$: max size of a family $\mathcal{F} \subset 2^{[n]}$ with no weak k-sunflowers.

Kostochka, Rödl, 1998: $G_k(n) \ge k^{c(n \log n)^{1/3}}$ Frankl, Rödl, 1987: $G_k(n) \le (2 - \varepsilon_k + o(1))^n$ Naslund, 2022: $G_3(n) \le (1.837 + o(1))^n$

Theorem (AK, Sagdeev, Zakharov, 2023)

$$G_k \leqslant \left(2\psi^{-1/k} + o(1)\right)^n$$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

as $n \to \infty$, where $\psi = \frac{1+\sqrt{2}}{2} = 1.207...$

For k=3, is worse: $G_3(n) \leqslant \left(1.879 + o(1)\right)^n$, but better for $k \geqslant 4$.

Frankl–Rödl from Frankl-Wilson

Theorem (Frankl and Wilson, 1981)

If a family $\mathcal{F} \subset {[n] \choose k}$ is *t*-avoiding (i.e., no $|F_1 \cap F_2| = t$), t < k/2 and k - t is a prime power, then $|\mathcal{F}| \leq \sum_{i=0}^{k-t-1} {n \choose i}$.

Theorem (Frankl and Rödl, 1987)

If a family $\mathcal{F} \subset {[n] \choose k}$ is *t*-avoiding and t < k/2, then $|\mathcal{F}| \leq (2 - \epsilon)^n$. Specific bounds from Frankl–Wilson are essentially sharp, and from Frankl–Rödl are quite bad.

Keevash and Long, 2017: Frankl–Rödl from Frankl-Wilson using that any number is a sum of 4 primes and dependent random choice.

Using orthogonal path-like concatenation, we can get a much shorter and more efficient reduction. Decompose $n = \sum_{i=1}^{4} n_i$, where $n_i \sim n/4$ and $t = \sum_{i=1}^{4} t_i$, where $t_i \sim t/4$ so that $n_i - t_i$ is a prime, and apply Frankl-Wilson in each piece.

Max-norm Ramsey Theory

For a set $X \subset \mathbb{R}^d$, the chromatic number $\chi(\mathbb{R}^n_{\infty}, X)$ is the minimum number of colors to color points of \mathbb{R}^n_{∞} without a monochromatic isometric copy of X.

Theorem (Kupavskii, Sagdeev, 2021)

Any finite metric space X is exponentially ℓ_{∞} -Ramsey.

One-dimensional metric spaces (batons)

Given $\lambda_1, \ldots, \lambda_k > 0$, set $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_k)$. For all $i \in \{0, \ldots, k\}$, define $\sigma_i = \sum_{j=1}^i \lambda_j$. The set $\{\sigma_0, \ldots, \sigma_k\} \subset \mathbb{R}$ a *baton* $\mathcal{B}(\boldsymbol{\lambda})$. For $\mu > 0$, put $\mathcal{B}_k(\mu) = \mathcal{B}((\mu, \ldots, \mu))$

Max-norm Ramsey Theory

For a subset $S \subset \mathbb{Z}$: $d(\mathbb{Z}, S)$ is the supremum of upper densities of $A \subset \mathbb{Z}$ s.t. for all $x \in \mathbb{Z}$, A contains neither S + x nor -S + x.

Theorem (Frankl, Kupavskii, Sagdeev) Let $k \in \mathbb{N}$ and $\lambda = (\lambda_1, \ldots, \lambda_k)$, $\lambda_i > 0$. Then

$$\chi(\mathbb{R}^n_{\infty},\mathcal{B}) = \left(d(\mathbb{Z},\mathcal{B})^{-1} + o(1)\right)^n.$$

For general batons, the situation is more complicated, but we can prove **Theorem (Frankl, Kupavskii, Sagdeev)** If $\lambda = (\lambda_1, \dots, \lambda_k), \lambda_i > 0$ and are linearly independent over \mathbb{Z} , then

$$\chi(\mathbb{R}^n_{\infty}, \mathcal{B}(\boldsymbol{\lambda})) = \left(\frac{k+1}{k} + o(1)\right)^n.$$

Products of 1-dimensional spaces

Theorem (Frankl, AK, Sagdeev)

Let $k, m \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_m$ be positive reals. Then

$$\chi(\mathbb{R}^n_{\infty}, \mathcal{B}_k(\lambda_1) \times \cdots \times \mathcal{B}_k(\lambda_m)) = \left(\frac{k+1}{k} + o(1)\right)^n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Open problems

Problem (Frankl, AK, Sagdeev)

Let $\mathcal{Y}_1, \mathcal{Y}_2$ be two arbitrary one-dimensional metric spaces and c_1, c_2 be positive reals such that $\chi(\mathbb{R}^n_\infty, \mathcal{Y}_i) = (c_i + o(1))^n$, i = 1, 2. Set $c = \min\{c_1, c_2\}$. Is it always true that

$$\chi(\mathbb{R}^n_{\infty}, \mathcal{Y}_1 \times \mathcal{Y}_2) \ge (c + o(1))^n$$
?

Problem (Frankl, AK, Sagdeev)

Is there an infinite set B with $\chi(\mathbb{R}^n_{\infty}, B) = n + 1$?

Problem (AK, Sagdeev, Zakharov)

Understand the behaviour of $\chi(\mathbb{R}^n, \triangle^k)$ for k = k(n).