Compositions of Sets in Geometric Ramsey Theory

Andrey Kupavskii

MIPT

Discrete Geometry Days

Budapest, 05.07.2024

Joint work with Nora Frankl, Arsenii Sagdeev and Dmitrii Zakharov

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 ▶ 이익 안

Ramsey Sets

For a set $X \subset \mathbb{R}^d$, the chromatic number $\chi(\mathbb{R}^n,X)$ is the minimum number of colors to color points of \mathbb{R}^n without a monochromatic isometric copy of X .

A set is Ramsey if $\chi(\mathbb{R}^n, X) \to \infty$ as $n \to \infty$

Erd®s, Graham, Montgomery, Rothschild, Spencer, Straus, 1973: A set is Ramsey only if it is finite and spherical

Question (EGMRSS)/Conjecture (Graham): Should it be iff?

Known Ramsey sets: pair of points, triangles, non-degenerate simplices, direct products of Ramsey sets, dodecahedron, icosahedron, 120-cell etc.

Exponentially Ramsey Sets

A set X is exponentially Ramsey if $\chi(\R^n,X) = (c+o(1))^n$ for some $c > 1$.

What is the best c for different sets?

Raigorodskii, 2000: $\chi(\mathbb{R}^n, X) \geqslant (\psi + o(1))^n$ for a two-point X and $\psi = 1.239...$

The case of unit triangles

Frankl and Rödl, 1987: unit triangles are exponentially Ramsey Sagdeev, 2019: $\chi(\mathbb{R}^n, \triangle) \geq (1.0140... + o(1))^n$ Naslund, 2020: $\chi(\mathbb{R}^n, \triangle) \geq (1.0144... + o(1))^n$

Theorem (AK, Sagdeev, Zakharov, 2023)

 $\chi(\mathbb{R}^n, \triangle) \geqslant (\psi^{1/2} + o(1))^n = (1.0742... + o(1))^n$

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

Exponentially Ramsey Sets

A set X is super-Ramsey if there exist $C, c > 1$ s.t. for any n there is a set V of size at most C^n s.t. $|V|/\alpha(V,X) > (c+o(1))^n$.

Theorem(Frankl and Rödl, 1990)

If X_1 and X_2 are super-Ramsey, then so is $X_1 \times X_2$.

How to get a bound for a unit simplex? via $\triangle^k \subset \Box^{k+1}$

 ``Original'' Frankl and Rödl gives $\quad \chi(\R^n, \triangle^k) \geqslant \left(1+2^{-2^{k+4}}+o(1)\right)^n.$ 'Product' Frankl and Rödl gives $\chi(\mathbb{R}^n,\triangle^k) \geqslant \left(1 {+} \frac{1}{(L+1)}\right)$ $\frac{1}{(k+1)^2 2^{k+1}} + o(1)$ ⁿ.

Theorem (AK, Sagdeev, Zakharov, 2023)

$$
\chi(\mathbb{R}^n, \triangle^k) \geqslant \left(\psi^{1/(k+1)} + o(1)\right)^n \geqslant \left(1 + \frac{\psi}{k+1} + o(1)\right)^n
$$

Our approach: Tree-like concatenation

Lemma (Rainbow trees in large vertex sets)

 $G_i = (V, E_i), i \in [k]$ are graphs on the same vertex set. Fix a tree T with k ordered edges. Then in any $W \subset V$, $|W| > \alpha(G_1) + \ldots + \alpha(G_k)$, there exists a homomorphic copy of T in $G = (V, E_1 \cup ... \cup E_k)$ s.t. the image of the $i\text{-th}$ edge belongs to E_i

Proof: simple induction on the size of the tree.

Orthogonal trees

 $G'_i = (V_i, E'_i), i \in [k]$, be a family of k graphs, and $(u_i, w_i) \in E'_i, i \in [k]$. An orthogonal star:

 $\mathbf{w}_0 = (w_1, \ldots, w_k), \mathbf{w}_1 = (u_1, w_2, \ldots, w_k), \ldots, \mathbf{w}_k = (w_1, \ldots, w_{k-1}, u_k).$ An orthogonal path:

KORKA SERKER ORA

Orthogonal trees

 $G_i = (V_1 \times \cdots \times V_k, E_i), E_i = \{(\mathbf{x}, \mathbf{y}) : (x_i, y_i) \in E'_i, x_j = y_j \text{ for } j \neq i\}$

Lemma (Avoiding orthogonal stars/paths)

If $W \subset V_1 \times \cdots \times V_k$ contains no orthogonal stars (or no orthogonal paths), then

$$
\frac{|W|}{|V_1 \times \cdots \times V_k|} \leqslant \sum_{i=1}^k \frac{\alpha(G_i)}{|V_i|}.
$$

KORKA BRADE KORA

Application to $\chi(\mathbb{R}^n,\triangle)$

 k -semicross $\mathrm{SC}^k\colon \{\mathbf{0},\mathbf{e}_1,\dots,\mathbf{e}_k\}\subset\mathbb{R}^k$, where $\{\mathbf{e}_i\}$ is the standard basis

For $V \subset \mathbb{R}^n$, consider a unit distance graph $G = (V, E)$: two points of V are connected iff they are at unit distance apart.

An orthogonal star in the Cartesian power V^k is isometric to SC^k . Thus

$$
\alpha(V^k, \mathbf{SC}^k) \leq k|V|^{k-1}\alpha(V).
$$

Substitute in the Lemma the set $A\subset \mathbb{R}^n$ giving the best bound for the ratio $|A|/\alpha(A)$ (where α is w.r.t. avoiding unit distances):

$$
\chi(\mathbb{R}^{kn}, \mathbf{SC}^k) \geq \frac{|A|^k}{\alpha(A^k, \mathbf{SC}^k)} \geq \frac{|A|^k}{k|A|^{k-1}\alpha(A)} \geq (\psi_2 + o(1))^n.
$$

Application to $\chi(\mathbb{R}^n,\triangle)$

Embed $\triangle^k \subset \mathrm{SC}^k$, instead of $\triangle^k \subset \Box^{k+1}$.

 $\chi(\mathbb{R}^n, \triangle^k)$ for $k = k(n)$

Best lower bound, Zakharov, 2023:

$$
\chi(\mathbb{R}^n, \triangle^k) \geqslant ce^{c\sqrt{n/k}} \quad \text{ for some } c > 0
$$

Best upper bound, Prosanov, 2018:

$$
\chi\big(\mathbb{R}^n,\triangle^k\big)\leqslant \left(1+\sqrt{2(k+1)/k}+o(1)\right)^n
$$

Question

For $\varepsilon > 0$, is there $k = k(\varepsilon)$ such that

$$
\chi\big(\mathbb{R}^n,\triangle^k\big)\leqslant \big(1+\varepsilon+o(1)\big)^n\text{ as }n\to\infty?
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Weak sunflowers

A collection of $k \geqslant 3$ sets is called a weak k-sunflower if all their pairwise intersections are of the same cardinality.

 $G_k(n)$: max size of a family $\mathcal{F} \subset 2^{[n]}$ with no weak k -sunflowers.

Kostochka, Rödl, 1998: $G_k(n) \geqslant k^{c(n\log n)^{1/3}}$ Frankl, Rödl, 1987: $(2 - \varepsilon_k + o(1))^n$ Naslund, 2022: $(1.837 + o(1))^{n}$

Theorem (AK, Sagdeev, Zakharov, 2023)

 $G_k \leqslant (2\psi^{-1/k} + o(1))^n$

KORKAR KERKER EL VOLO

as $n \to \infty$, where $\psi = \frac{1+\sqrt{2}}{2} = 1.207...$

For $k=3$, is worse: $G_3(n) \leqslant (1.879+o(1))^n$, but better for $k \geqslant 4.8$

Frankl-Rödl from Frankl-Wilson

Theorem (Frankl and Wilson, 1981)

If a family $\mathcal{F}\subset \binom{[n]}{k}$ is t -avoiding (i.e., no $|F_1\cap F_2|=t)$, $t < k/2$ and $k-t$ is a prime power, then $|\mathcal{F}| \leqslant \sum_{i=0}^{k-t-1} \binom{n}{i}.$

Theorem (Frankl and Rödl, 1987)

If a family $\mathcal{F} \subset \binom{[n]}{k}$ is t-avoiding and $t < k/2$, then $|\mathcal{F}| \leqslant (2-\epsilon)^n$. Specific bounds from Frankl-Wilson are essentially sharp, and from Frankl–Rödl are quite bad.

Keevash and Long, 2017: Frankl-Rödl from Frankl-Wilson using that any number is a sum of 4 primes and dependent random choice.

Using orthogonal path-like concatenation, we can get a much shorter and more efficient reduction. Decompose $n=\sum_{i=1}^4 n_i$ where $n_i\sim n/4$ and $t = \sum_{i=1}^4 t_i$, where $t_i \sim t/4$ so that $n_i - t_i$ is a prime, and apply Frankl-Wilson in each piece.

Max-norm Ramsey Theory

For a set $X \subset \mathbb{R}^d$, the chromatic number $\chi(\mathbb{R}^n_\infty,X)$ is the minimum number of colors to color points of \mathbb{R}^n_∞ without a monochromatic isometric copy of X .

Theorem (Kupavskii, Sagdeev, 2021)

Any finite metric space X is exponentially ℓ_{∞} -Ramsey.

One-dimensional metric spaces (batons)

Given $\lambda_1, \ldots, \lambda_k > 0$, set $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_k)$. For all $i \in \{0, \ldots, k\}$, define $\sigma_i=\sum_{j=1}^i\lambda_j$. The set $\{\sigma_0,\,\ldots\,,\sigma_k\}\subset\mathbb{R}$ a *baton* $\mathcal{B}(\boldsymbol{\lambda})$. For $\mu>0$, put $\mathcal{B}_k(\mu)=\mathcal{B}((\mu,\,\ldots\,,\mu))$

KORKA BRADE KORA

Max-norm Ramsey Theory

For a subset $S \subset \mathbb{Z}$: $d(\mathbb{Z},S)$ is the supremum of upper densities of $A \subset \mathbb{Z}$ s.t. for all $x \in \mathbb{Z}$, A contains neither $S + x$ nor $-S + x$.

Theorem (Frankl, Kupavskii, Sagdeev) Let $k \in \mathbb{N}$ and $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_k), \lambda_i > 0$. Then

$$
\chi(\mathbb{R}_{\infty}^n,\mathcal{B})=\big(d(\mathbb{Z},\mathcal{B})^{-1}+o(1)\big)^n.
$$

For general batons, the situation is more complicated, but we can prove Theorem (Frankl, Kupavskii, Sagdeev) If $\boldsymbol{\lambda}=(\lambda_1,\ldots,\lambda_k), \lambda_i>0$ and are linearly independent over $\mathbb Z$, then

$$
\chi(\mathbb{R}_{\infty}^n,\mathcal{B}(\boldsymbol{\lambda}))=\left(\frac{k+1}{k}+o(1)\right)^n.
$$

KORKA BRADE KORA

Products of 1-dimensional spaces

Theorem (Frankl, AK, Sagdeev) Let $k, m \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_m$ be positive reals. Then

$$
\chi\big(\mathbb{R}^n_\infty, \mathcal{B}_k(\lambda_1)\times\cdots\times\mathcal{B}_k(\lambda_m)\big)=\left(\frac{k+1}{k}+o(1)\right)^n.
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Open problems

Problem (Frankl, AK, Sagdeev)

Let $\mathcal{Y}_1, \mathcal{Y}_2$ be two arbitrary one-dimensional metric spaces and c_1, c_2 be positive reals such that $\chi(\mathbb{R}_{\infty}^n, \mathcal{Y}_i) = (c_i + o(1))^n$, $i = 1, 2$. Set $c = \min\{c_1, c_2\}$. Is it always true that

$$
\chi(\mathbb{R}^n_\infty, \mathcal{Y}_1 \times \mathcal{Y}_2) \geqslant (c + o(1))^n ?
$$

KORKA BRADE KORA

Problem (Frankl, AK, Sagdeev)

Is there an infinite set B with $\chi(\mathbb{R}^n_\infty,B)=n+1?$

Problem (AK, Sagdeev, Zakharov) Understand the behaviour of $\chi(\mathbb{R}^n, \triangle^k)$ for $k = k(n)$.