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Overview

Unit distance graphs: basic notions and problem formulation

Hierarchy of linear programs I:fractional chromatic number(FCN)

Hierarchy of linear programs II: the geometric fractional
chromatic number (GFCN)

Computer search: an example for GFCN=4

Hierarchy of linear programs III: Fourier analysis

Computer search: a witness graph for density bounds

Joint with G. Ambrus, A. Csiszárik, I. Ruzsa, D. Varga, P. Zsámboki
(the talk does not follow the historical order of our results)
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Unit distance graphs

In this talk, everything happens in the Euclidean plane. (Higher
dimensions also possible, but not today!)

A unit distance graph (UDG) is a finite subset of the plane,
where two vertices are connected if and only if they are unit
distance away.
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Chromatic number, independence ratio

Chromatic number (CN) of a unit distance graph G: the
minimal number of colours needed if adjacent vertices must have
different colour.

Independence ratio (IR): the relative size of the largest
independent set in G

For the Moser spindle we have CN(Moser) = 4,
IR(Moser) = 2/7.

CN(G) ≥ 1
IR(G)
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Hadwiger-Nelson problem

What is the chromatic
number of the whole plane?
At most 7, by the picture.

The Moser spindle proves
that it is at least 4. Brothers
Leo and William Moser found
it in 1961.

Aubrey de Grey (2018): The
chromatic number of R2 is at
least 5 (a graph on 1581
vertices)
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1-avoiding sets

A set is called 1-avoiding, if there are no two points unit
distance away.

In 1966, Leo Moser asked for the highest density of a measurable
1-avoiding subset A of the plane.

More exactly, he defined m1(R2) to be the supremum of the
upper densities of 1-avoiding measurable sets in R2, and asked
about its value.

Easy: we can assume that A is periodic with ε loss in the density.
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Croft’s tortoise: m1(R2) > 0.2293
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Erdős’ conjecture: m1(R2) < 0.25

The Croft construction might be optimal (people have tried and
failed to improve it since its introduction in 1967.)

Paul Erdős formulated a weaker conjecture:

Erdős’ Conjecture (1985)

m1(R2) < 1/4. That is, the supremum of the upper densities of
1-avoiding measurable sets in R2 is less than 1/4.

Remark: this implies that at least 5 colours are needed for the plane,
if we use measurable colour classes.
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Linear programs induced by 1-avoiding sets

We want to prove that all 1-avoiding sets have low densities.

My opponent brings a 1-avoiding set A, and claims that it has
high density.

I bring a small unit distance graph X (this will be my witness,
that he is wrong).

I randomly drop X on the plane, and take its intersection with
A.

I record the relative frequencies of the intersections. This will
give a probability distribution on the independent sets of X.

We write up linear constraints on the frequencies.
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Randomly dropping a graph on the set
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Randomly dropping a graph on the set
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Randomly dropping a graph on the set
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Histogram of intersection patterns
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Linear program I: fractional chromatic number

Let δ denote the density of the 1-avoding set A, and a(I)
denote the occurrence rate corresponding to an independent set
I of X in the histogram.

We can write up linear constraints for the ”atomic variables”
a(I).

a(I) ≥ 0,
∑

I aI = 1, and for every z ∈ X we have∑
z∈I a(I) = δ.

We get an upper bound on the density δ by solving an LP:
maximize δ with the above constraints.

The reciprocal of the maximal value is called the fractional
chromatic number FCN(X). (Divide everything by δ and
minimize

∑
I a(I).)
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FCN evolution

To prove δ < 1/4 we need a graph X with FCN(X) > 4. The
evolution of the best know values of FCN:

3.5 (Moser 1966)

3.55 (Fisher and Ullman 1997)

3.61 (Cranston and Rabern 2015)

3.89 (Bellitto, Pecher, and Sedillot 2018)

3.97 (Parts 2019, unpublished)

3.99 (Parts 2020, unpublished)

The graphs are getting pretty large in the last three cases. Maybe
FCN(R2) = 4???
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Linear program II: geometric fractional chromatic

number

There are further linear constraints on the variables a(I), induced by
geometric congruencies.

If K ∼= J are congruent independent sets of X, then∑
K⊂I a(I) =

∑
J⊂I a(I)

We define the geometric chromatic number GFCN(X) by adding
these constraints.

To prove δ < 1/4 we need a graph X with GFCN(X) > 4.
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Theorems for FCN, GFCN and IR

A fairly trivial monotonicity relation holds: if X ⊂ Y then
FCN(X) ≤ FCN(Y ) and GFCN(X) ≤ GFCN(Y ).

Also, we have 1
IR(X)

≤ FCN(X) ≤ GFCN(X) for every finite
X.

Interestingly, the values are equal in the limit:

1
IR(R2)

= FCN(R2) = GFCN(R2).
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From GFCN to FCN: blow-up construction

Idea of the proof of FCN(R2) = GFCN(R2)

Assume that for a graph X the value GFCN(X) = γ is large.

Define a huge graph Y by pasting many translated and rotated
copies of X on the plane.

Due to the fact that Y is ”almost” invariant under translations
and rotations, FCN(Y ) will be almost as large as γ.

(The proof works only in dimension 2.)
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Computer search: GFCN(X) = 4

We want to find a graph with ”large” FCN or GFCN. Although there
is no theoretical advantage in considering GFCN over FCN, there is a
huge practical advantage. The graphs are smaller!

GFCN

There exists a graph X on 27 vertices such that GFCN(X) = 4.

(Curiosity: we only find ”ugly” solutions of the dual LP.)

Corollary: The (upper) density δ ≤ 1/4 for all 1-avoiding sets.

But this still falls short of proving Erdős’ conjecture: δ < 1/4.
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The result of the beam search: X27
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Linear program III: Fourier analysis

By the geometric constraint, if two segments L1, L2 ⊂ X have the
same length, then

∑
L1⊂I a(I) =

∑
L2⊂I a(I).

This defines an ”autocorrelation” function f(x) for the values
x = |L1| = |L2| appearing as distances in the graph X.
The value f(x) can be defined for any x as the average value of
δ(A ∩ (A+ v)) where v ∈ R2 is a vector of length x.
This function f can then be expanded as f(x) =

∑
t≥0 κ(t)Ω2(tx)

where Ω2 is a Bessel function, and the ”Fourier coefficients” κ(t) are
nonnegative. This leads to new linear constraints.
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The final LP

Maximize
∑

t≥0 κ(t) subject to

(CP) κ(t) ≥ 0 for every t ≥ 0

(IEP) a(I) ≥ 0

(C0)
∑

t≥0 κ(t)Ω2(t) = 0 ⇐ 1-avoiding set

(IET)
∑

I a(I) = 1

(IE1)
∑

t≥0 κ(t)−
∑

z∈I) a(I) = 0 for every z ∈ X

(IE2)
∑

t≥0 κ(t)Ω2(t|zi − zj|)−
∑

z1,z2∈I a(I) = 0 for z1 ̸= z2 ∈ X

(IEC)
∑

K⊂I a(I)−
∑

J⊂I a(I) = 0 for every K ∼= J .
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Computer search: a witness graph on 24 vertices

We performed a computer search starting from the Moser
spindle: we build the graph incrementally, adding new vertices in
every step.

We employ beam search.

We found a graph X on 24 vertices that testifies that δ ≤ 0.247
for any 1-avoiding set.

Verification by symbolic calculation of the vertices and
congruencies, and application of weak duality (basically solving
the dual LP, augmented by error estimates).
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The result of the beam search: X24
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Time to solve

This data is about the first n vertices of the set G24 in our paper.

n # variables # equations time to solve (sec) f̃(0)
7 12018 19 0.39 0.28305
8 12029 26 0.44 0.28258
9 12044 37 0.51 0.26631
...
21 19170 911 5.12 0.24997
22 22630 1288 6.68 0.24896
23 26899 2027 10.09 0.24796
24 34321 2375 13.46 0.24697

The beam search has run for a week on 128 CPUs.
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The result of the beam search: m1(R2) ≤ 0.247

Theorem

The graph G24 is a witness to the fact that m1(R2) ≤ 0.247, settling
Erdős’s Conjecture.

The linear program defined by G24 has 22321 atom variables and
12000 Fourier variables. It has 24 (IE1) constrains, 227 (IE2)
constraints connecting the Fourier variables to the atom variables,
and 2122 (IEC) congruence constraints.
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Plot of autocorrelation functions

If we plot the arising autocorrelation functions, we get is a nice
indication of the progress on the upper bound on m1(R

2).
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Ongoing work

We have now set our sights on other problems that can be
attacked with this framework.

Prove that at least 6 measurable colours are needed for the
plane.

Give density bounds on the sphere for sets avoiding orthogonal
vectors (”double cap problem”).
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Summary

Any finite point set on the plane can be turned into an upper
bound on the density of a 1-avoiding set by solving some LP’s.

We found a graph on 27 vertices whose GFCN=4, which is
interesting in itself. But could not find graphs with strictly larger
values of GFCN.

We invoke Fourier analysis, to put further constraints in the LP,
and find a graph on 24 vertices which testifies that δ ≤ 0.247 for
any 1-avoiding set
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Thank you!
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