Random spherical disc-polygons and a spherical spindle-convex duality

Kinga Nagy University of Szeged, Hungary

Joint work with Viktor Vígh

Discrete Geometry Days³, Budapest July 2nd, 2024

Kinga Nagy

Random polytopes

• convex hull of n independently chosen uniform points from K

The notion of spindle-convexity

Mayer 1935; Polovinkin 1996; Bezdek, Lángi, Naszódi, Papez 2007

The notion of spindle-convexity

Mayer 1935; Polovinkin 1996; Bezdek, Lángi, Naszódi, Papez 2007

- *r-spindle* of two points: intersection of all closed discs of radius *r* that contain them
- *r spindle-convex set*: contains the *r*-spindle of every pair of its points

The notion of spindle-convexity

Mayer 1935; Polovinkin 1996; Bezdek, Lángi, Naszódi, Papez 2007

- *r-spindle* of two points: intersection of all closed discs of radius *r* that contain them
- *r spindle-convex set*: contains the *r*-spindle of every pair of its points
- *r disc-polygon*: spindle-convex hull of a finite set of points

• Spherical spindle convexity ightarrow same definitions on the sphere S^2

- Spherical spindle convexity ightarrow same definitions on the sphere S^2
- Connection between Euclidean spindle-convexity and classical spherical convexity

Constructing circumscribed disc-polygons

Constructing circumscribed disc-polygons

Let $K_{(n)}$ be the dual of a disc-polygon in K^r (the dual of K)

Constructing circumscribed disc-polygons

Let $K_{(n)}$ be the dual of a disc-polygon in K^r (the dual of K)

A spindle-convex duality - Euclidean case

For $K \subseteq \mathbb{R}^2$, let

$$\mathcal{K}^r = \{y \in \mathbb{R}^2 \mid \mathcal{K} \subseteq \mathcal{B}(y, r)\} = \bigcap_{x \in \mathcal{K}} \mathcal{B}(x, r).$$

(Fodor, Kurusa, Vígh 2016, Fodor, Vígh 2018)

A spindle-convex duality - Euclidean case

For $K \subseteq \mathbb{R}^2$, let $K^r = \{y \in \mathbb{R}^2 \mid K \subseteq B(y, r)\} = \bigcap_{x \in K} B(x, r).$

> (Fodor, Kurusa, Vígh 2016, Fodor, Vígh 2018)

If $K \subseteq \mathbb{R}^2$ is *r* spindle-convex, then

$$K + (-K^r) = rB^2$$

ightarrow the dual is essentially the Minkowski difference of rB^2 and K

A spindle-convex duality - Euclidean case

For $K \subseteq \mathbb{R}^2$, let $K^r = \{y \in \mathbb{R}^2 \mid K \subseteq B(y, r)\} = \bigcap_{x \in K} B(x, r).$

> (Fodor, Kurusa, Vígh 2016, Fodor, Vígh 2018)

If $K \subseteq \mathbb{R}^2$ is *r* spindle-convex, then

$$K + (-K^r) = rB^2$$

 \rightarrow the dual is essentially the Minkowski difference of rB^2 and K

Analogous notion in L-convexity (N., Vígh 2023, Fodor, Grünfelder 2024)

A spherical spindle-convex duality

$$\mathcal{K}^r = \{y \in S^2 \mid \mathcal{K} \subseteq \mathcal{B}(y, r)\} = \bigcap_{x \in \mathcal{K}} \mathcal{B}(x, r).$$

Kinga Nagy

A spherical spindle-convex duality

$$\mathcal{K}^r = \{y \in S^2 \mid \mathcal{K} \subseteq B(y,r)\} = \bigcap_{x \in \mathcal{K}} B(x,r).$$

For $r = \pi/2$:

$$\mathcal{K}^{\pi/2} = \{ y \in \mathcal{S}^2 \mid \langle x, y \rangle \ge 0 \ \forall x \in \mathcal{K} \} = -\mathcal{K}^\circ$$

Lemma (Fodor, Kurusa, Vígh 2016; Fodor, Vígh 2018)

Let $K \subseteq \mathbb{R}^2$ be an r spindle-convex disc. Then (*i*) $\operatorname{Per}(K^r) + \operatorname{Per}(K) = 2r\pi$ and (*ii*) $\operatorname{Area}(K^r) = r^2\pi - r \cdot \operatorname{Per}(K) + \operatorname{Area}(K)$.

• • • • • • • •

Lemma (Fodor, Kurusa, Vígh 2016; Fodor, Vígh 2018)

Let $K \subseteq \mathbb{R}^2$ be an r spindle-convex disc. Then (i) $Per(K^r) + Per(K) = 2r\pi$ and (ii) $Area(K^r) = r^2\pi - r \cdot Per(K) + Area(K)$.

Lemma (N., Vígh 2024+)

Let $K \subseteq S^2$ be a spherically r spindle-convex disc. Then (*i*) $Per(K^r) = \sin r \cdot 2\pi - \cos r \cdot Per(K) - \sin r \cdot SArea(K)$ and (*ii*) $SArea(K^r) = (1 - \cos r) \cdot 2\pi - \sin r \cdot Per(K) + \cos r \cdot SArea(K)$.

Lemma (Fodor, Kurusa, Vígh 2016; Fodor, Vígh 2018)

Let $K \subseteq \mathbb{R}^2$ be an r spindle-convex disc. Then (i) $Per(K^r) + Per(K) = 2r\pi$ and (ii) $Area(K^r) = r^2\pi - r \cdot Per(K) + Area(K)$.

Lemma (N., Vígh 2024+)

Let $K \subseteq S^2$ be a spherically r spindle-convex disc. Then (i) $Per(K^r) = \sin r \cdot 2\pi - \cos r \cdot Per(K) - \sin r \cdot SArea(K)$ and (ii) $SArea(K^r) = (1 - \cos r) \cdot 2\pi - \sin r \cdot Per(K) + \cos r \cdot SArea(K)$.

For the spherical polar $K^{\circ} = -K^{\pi/2}$ we have

 $\operatorname{Per}(K^{\circ}) + \operatorname{SArea}(K) = 2\pi.$

Thank you for your attention!

Kinga Nagy