Alexander Natalchenko

Tilings, packings and coverings in 2

Sets with only two non-mixe gaps

Open problems

Packing density of sets with only two non-mixed gaps

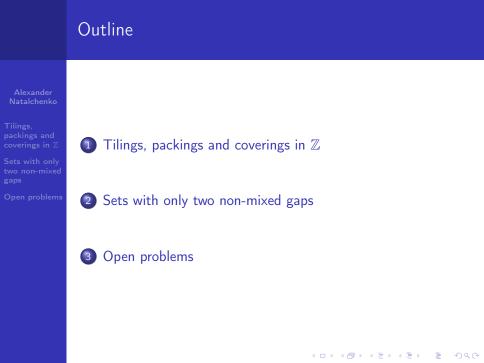
Alexander Natalchenko

Moscow Institute of Physics and Technology

joint with Arsenii Sagdeev

Discrete Geometry Days

2 July 2024



Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixe gaps

Open problems

Tilings of $\mathbb Z$

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Definition

Let $S \subset \mathbb{Z}$ be a finite set. We say that S tiles \mathbb{Z} if there exists $A \subset \mathbb{Z}$ such that for every $x \in \mathbb{Z}$ there are unique $a \in A$, $s \in S$ such that x = a + s.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Tilings of $\mathbb Z$

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Definition

Let $S \subset \mathbb{Z}$ be a finite set. We say that S tiles \mathbb{Z} if there exists $A \subset \mathbb{Z}$ such that for every $x \in \mathbb{Z}$ there are unique $a \in A$, $s \in S$ such that x = a + s.

Set $S_1 = \{0, 2, 4\}$ tiles \mathbb{Z} , but $S_2 = \{0, 1, 3\}$ does not. So, not every set tiles \mathbb{Z} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Tilings, packings and coverings in Z

Sets with only two non-mixe gaps

Open problems

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

D.J. Newman (1977): Let s₁, s₂, ..., s_k be distinct integers with k = p^α, p a prime, α a positive integer. For each pair s_i, s_j, i ≠ j, we denote by p^{e_{ij}} the highest power of p which divides s_i - s_j. The set S = {s₁, s₂, ..., s_k} tiles the integers if and only if there are at most α distinct e_{ij}.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

- D.J. Newman (1977): Let s₁, s₂, ..., s_k be distinct integers with k = p^α, p a prime, α a positive integer. For each pair s_i, s_j, i ≠ j, we denote by p^{e_{ij}} the highest power of p which divides s_i s_j. The set S = {s₁, s₂, ..., s_k} tiles the integers if and only if there are at most α distinct e_{ij}.
- E. M. Coven, A. Meyerovitz (1999): Characterization of sets S that tile Z, |S| = p₁^{α1} p₂^{α2} with prime p₁, p₂.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

- D.J. Newman (1977): Let s₁, s₂, ..., s_k be distinct integers with k = p^α, p a prime, α a positive integer. For each pair s_i, s_j, i ≠ j, we denote by p^{e_{ij}} the highest power of p which divides s_i s_j. The set S = {s₁, s₂, ..., s_k} tiles the integers if and only if there are at most α distinct e_{ij}.
- E. M. Coven, A. Meyerovitz (1999): Characterization of sets S that tile Z, |S| = p₁^{α1} p₂^{α2} with prime p₁, p₂.
- I. Łaba , I. Londner (2022-2023): Characterization of tilings with a period of length (p1p2p3)² with prime p1, p2, p3.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

• D.J. Newman (1977): All tilings in ℤ by translates of finite S are periodic.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

- D.J. Newman (1977): All tilings in ℤ by translates of finite S are periodic.
- E. M. Coven, A. Meyerovitz (1999): If S tiles Z, then there is a tiling by S whose period is a product of powers of the prime factors of |S|.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Alexander Natalchenko

Tilings, packings and coverings in Z

- Sets with only two non-mixed gaps
- Open problems

- D.J. Newman (1977): All tilings in Z by translates of finite S are periodic.
- E. M. Coven, A. Meyerovitz (1999): If *S* tiles ℤ, then there is a tiling by *S* whose period is a product of powers of the prime factors of |*S*|.

• A. Biró (2005): There is a period of length at most $\exp\{D^{1/3+\varepsilon}\}$, $D = \operatorname{diam}(S)$.

Alexander Natalchenko

Tilings, packings and coverings in Z

- Sets with only two non-mixed gaps
- Open problems

- D.J. Newman (1977): All tilings in Z by translates of finite S are periodic.
- E. M. Coven, A. Meyerovitz (1999): If S tiles Z, then there is a tiling by S whose period is a product of powers of the prime factors of |S|.
- A. Biró (2005): There is a period of length at most $\exp\{D^{1/3+\varepsilon}\}$, $D = \operatorname{diam}(S)$.
- J. P. Steinberger (2009): The period can grow faster than any power of the diameter of *S*.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

If $S \subset \mathbb{Z}$ does not tile \mathbb{Z} , we can consider some problems of a similar nature.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

If $S \subset \mathbb{Z}$ does not tile \mathbb{Z} , we can consider some problems of a similar nature.

Packings

A set $A \subset \mathbb{Z}$ is called S-packing if $a_1 + S$ and $a_2 + S$ are disjoint for any distinct $a_1, a_2 \in A$.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

If $S \subset \mathbb{Z}$ does not tile \mathbb{Z} , we can consider some problems of a similar nature.

Packings

A set $A \subset \mathbb{Z}$ is called S-packing if $a_1 + S$ and $a_2 + S$ are disjoint for any distinct $a_1, a_2 \in A$.

Coverings

A set $A \subset \mathbb{Z}$ is called *S*-covering if each $x \in \mathbb{Z}$ belongs to some translate a + S, $a \in A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A	le>	nd	
	tal		

Tilings, packings and coverings in Z

Sets with only two non-mixe gaps

Open problems

Density

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Upper density $\overline{d}(A)$ and lower density $\underline{d}(A)$ of set $A \subset \mathbb{Z}$ are

$$\overline{d}(A) = \limsup_{n \to \infty} \frac{A[-n, n]}{2n + 1}, \quad \underline{d} = \liminf_{n \to \infty} \frac{A[-n, n]}{2n + 1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If $d(A) = \underline{d}(A) = \overline{d}(A)$, then A has density d(A).

Density

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Upper density $\overline{d}(A)$ and lower density $\underline{d}(A)$ of set $A \subset \mathbb{Z}$ are

$$\overline{d}(A) = \limsup_{n \to \infty} \frac{A[-n, n]}{2n + 1}, \quad \underline{d} = \liminf_{n \to \infty} \frac{A[-n, n]}{2n + 1}.$$

If $d(A) = \underline{d}(A) = \overline{d}(A)$, then A has density d(A).

Packing density

Packing density $d_p(S)$ of S is defined as the maximum upper density of an S-packing set.

Density

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Upper density $\overline{d}(A)$ and lower density $\underline{d}(A)$ of set $A \subset \mathbb{Z}$ are

$$\overline{d}(A) = \limsup_{n \to \infty} \frac{A[-n, n]}{2n + 1}, \quad \underline{d} = \liminf_{n \to \infty} \frac{A[-n, n]}{2n + 1}$$

If $d(A) = \underline{d}(A) = \overline{d}(A)$, then A has density d(A).

Packing density

Packing density $d_p(S)$ of S is defined as the maximum upper density of an S-packing set.

Covering density

Covering density $d_c(S)$ of S-covering is defined as the minimum lower density of an S-covering set.

Overview: Packings in \mathbb{Z}^{1}

Alexander

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Packings

A set $A \subset \mathbb{Z}$ is called S-packing if $a_1 + S$ and $a_2 + S$ are disjoint for any distinct $a_1, a_2 \in A$.

Packing density

Packing density $d_p(S)$ of S is defined as the maximum upper density of an S-packing set.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Overview: Packings in $\ensuremath{\mathbb{Z}}$

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Packings

A set $A \subset \mathbb{Z}$ is called *S*-packing if $a_1 + S$ and $a_2 + S$ are disjoint for any distinct $a_1, a_2 \in A$.

Packing density

Packing density $d_p(S)$ of S is defined as the maximum upper density of an S-packing set.

• G. Weinstein (1976): For any k-element set S we have

$$d_p(S) \geq \frac{2}{k^2}.$$

Overview: Packings in $\ensuremath{\mathbb{Z}}$

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Packings

A set $A \subset \mathbb{Z}$ is called *S*-packing if $a_1 + S$ and $a_2 + S$ are disjoint for any distinct $a_1, a_2 \in A$.

Packing density

Packing density $d_p(S)$ of S is defined as the maximum upper density of an S-packing set.

• G. Weinstein (1976): For any k-element set S we have

$$d_p(S) \geq \frac{2}{k^2}$$

• M. J. Golay (1972): For some sets |S| = k we have

$$d_p(S) \leq \frac{2.646}{k^2}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixe gaps

Open problems

Integer distance graph

Alexander Natalchenko

Tilings, packings and coverings in $\mathbb Z$

Sets with only two non-mixed gaps

Open problems

 $G(\mathbb{Z}, M)$ is a graph with the vertex set \mathbb{Z} where two vertices $v_1, v_2 \in \mathbb{Z}$ are adjacent if and only if $|v_1 - v_2| \in M$.

Integer distance graph

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

$G(\mathbb{Z}, M)$ is a graph with the vertex set \mathbb{Z} where two vertices $v_1, v_2 \in \mathbb{Z}$ are adjacent if and only if $|v_1 - v_2| \in M$.

M-avoiding set

A set $A \subset \mathbb{Z}$ is called *M*-avoiding if $a_1 - a_2 \notin M$ for every $a_1, a_2 \in A$.

Integer distance graph

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

$G(\mathbb{Z}, M)$ is a graph with the vertex set \mathbb{Z} where two vertices $v_1, v_2 \in \mathbb{Z}$ are adjacent if and only if $|v_1 - v_2| \in M$.

M-avoiding set

A set $A \subset \mathbb{Z}$ is called *M*-avoiding if $a_1 - a_2 \notin M$ for every $a_1, a_2 \in A$.

Independence ratio of an integer distance graph

Independence ratio $\mu(M)$ of $G(\mathbb{Z}, M)$ is the maximum upper density of an *M*-avoiding set.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixe gaps

Open problems

Alexander Natalchenko

Tilings, packings and coverings in $\mathbb Z$

Sets with only two non-mixed gaps

Open problems

Packing density and independence ratio

For finite $S \subset \mathbb{Z}$ and $M = \{s_2 - s_1 : s_1, s_2 \in S, s_1 < s_2\}$ we have $d_p(S) = \mu(M)$.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Packing density and independence ratio

For finite $S \subset \mathbb{Z}$ and $M = \{s_2 - s_1 : s_1, s_2 \in S, s_1 < s_2\}$ we have $d_p(S) = \mu(M)$.

Proof.

Two distinct translates $a_1 + S$ and $a_2 + S$ share a common point if and only if $a_1 + s_1 = a_2 + s_2$ for some $s_1 \neq s_2 \in S$, which can be rewritten as $a_1 - a_2 = s_2 - s_1$.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Alexander Natalchenko

Tilings, packings and coverings in $\mathbb Z$

Sets with only two non-mixe gaps

Open problems

Alexander Natalchenko

Tilings, packings and coverings in $\mathbb Z$

Sets with only two non-mixe gaps

Open problems

$$\mu(M) = 1/\chi_f(G(\mathbb{Z}, M)).$$

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Alexander Natalchenko

Tilings, packings and coverings in $\mathbb Z$

Sets with only two non-mixe gaps

Open problems

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

• D. G. Cantor, B. Gordon (1973):

$$M = \{a, b\}, \ \mu(M) = \frac{\lfloor (a+b)/2 \rfloor}{2}.$$

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

• S. Gupta (2000): for an arithmetical progression $M = \{n, n+d, n+2d, ..., n+(k-1)d\}$ we have

$$\mu(M) = \begin{cases} \frac{2n + (k-1)(d-1)}{2(2n + (k-1)d)}, & d \text{ is odd}, \\ \frac{1}{2}, & d \text{ is even.} \end{cases}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

• G. J. Chang, D. D.-F. Liu, X. Zhu (1999):
$$\mu(M) = 1/\chi_f(G(\mathbb{Z}, M)).$$

• S. Gupta (2000): for an arithmetical progression $M = \{n, n+d, n+2d, ..., n+(k-1)d\}$ we have

$$\mu(M) = \begin{cases} \frac{2n + (k-1)(d-1)}{2(2n + (k-1)d)}, & d \text{ is odd,} \\ \frac{1}{2}, & d \text{ is even.} \end{cases}$$

• R. K. Pandey, A. Tripathi (2015): for a geometric progression $M = \{a^k, a^{k-1}b, ..., ab^{k-1}, b^k\}$ we have $\mu(M) = \mu(\{a, b\}) = \frac{\lfloor (a+b)/2 \rfloor}{2}$.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Coverings

A set $A \subset \mathbb{Z}$ is called *S*-covering if each $x \in \mathbb{Z}$ belongs to some translate a + S, $a \in A$.

Covering density

Covering density $d_c(S)$ of S-covering is defined as the minimum lower density of an S-covering set.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Overview: Coverings of $\ensuremath{\mathbb{Z}}$

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Coverings

A set $A \subset \mathbb{Z}$ is called *S*-covering if each $x \in \mathbb{Z}$ belongs to some translate a + S, $a \in A$.

Covering density

Covering density $d_c(S)$ of S-covering is defined as the minimum lower density of an S-covering set.

• D. J. Newman (1967): For any k-element set S we have $d_c(S) \leq (1 + o(1)) \frac{\log k}{k}$ where $k \to \infty$.

Overview: Coverings of $\ensuremath{\mathbb{Z}}$

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Coverings

A set $A \subset \mathbb{Z}$ is called *S*-covering if each $x \in \mathbb{Z}$ belongs to some translate a + S, $a \in A$.

Covering density

Covering density $d_c(S)$ of S-covering is defined as the minimum lower density of an S-covering set.

- D. J. Newman (1967): For any k-element set S we have $d_c(S) \leq (1 + o(1)) \frac{\log k}{k}$ where $k \to \infty$.
- D. J. Newman (1967): For any 3-elements set S we have $d_c(S) \leq \frac{2}{5}$. It is tight if $S = \{0, 1, 3\}$.

Overview: Coverings of $\ensuremath{\mathbb{Z}}$

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Coverings

A set $A \subset \mathbb{Z}$ is called *S*-covering if each $x \in \mathbb{Z}$ belongs to some translate a + S, $a \in A$.

Covering density

Covering density $d_c(S)$ of S-covering is defined as the minimum lower density of an S-covering set.

- D. J. Newman (1967): For any k-element set S we have $d_c(S) \leq (1 + o(1)) \frac{\log k}{k}$ where $k \to \infty$.
- D. J. Newman (1967): For any 3-elements set S we have $d_c(S) \leq \frac{2}{5}$. It is tight if $S = \{0, 1, 3\}$.
- M. Axenovich, J. Goldwasser, B. Lidický et al. (2019): For any 4-elements set S we have d_c(S) ≤ ¹/₃. It is tight if S = {0,1,2,4}.

Alexander Natalchenko

Tilings, packings and coverings in $\mathbb Z$

Sets with only two non-mixe gaps

Open problems

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Schmidt–Tuller conjecture for packings and coverings (2008) Let $\lambda_1, \lambda_2 \in \mathbb{N}$ be two coprime integers. Then for $S = \{0, \lambda_1, \lambda_1 + \lambda_2\}$ we have $d_{p}(S) = \max\left(\frac{\left\lfloor\frac{1}{3}(\lambda_{1}+2\lambda_{2})\right\rfloor}{\lambda_{1}+2\lambda_{2}}, \frac{\left\lfloor\frac{1}{3}(2\lambda_{1}+\lambda_{2})\right\rfloor}{2\lambda_{1}+\lambda_{2}}\right),$ $d_c(S) = \min\left(\frac{\left|\frac{1}{3}(\lambda_1 + 2\lambda_2)\right|}{\lambda_1 + 2\lambda_2}, \frac{\left|\frac{1}{3}(2\lambda_1 + \lambda_2)\right|}{2\lambda_1 + \lambda_2}\right).$

Tilings, packings and coverings in \mathbb{Z}

Schmidt-Tuller conjecture for packings and coverings (2008)
Let
$$\lambda_1, \lambda_2 \in \mathbb{N}$$
 be two coprime integers. Then for
 $S = \{0, \lambda_1, \lambda_1 + \lambda_2\}$ we have
 $d_p(S) = \max\left(\frac{\left\lfloor\frac{1}{3}(\lambda_1 + 2\lambda_2)\right\rfloor}{\lambda_1 + 2\lambda_2}, \frac{\left\lfloor\frac{1}{3}(2\lambda_1 + \lambda_2)\right\rfloor}{2\lambda_1 + \lambda_2}\right),$
 $d_c(S) = \min\left(\frac{\left\lceil\frac{1}{3}(\lambda_1 + 2\lambda_2)\right\rceil}{\lambda_1 + 2\lambda_2}, \frac{\left\lceil\frac{1}{3}(2\lambda_1 + \lambda_2)\right\rceil}{2\lambda_1 + \lambda_2}\right).$

The result for the packing density was proved in 2004 by D. D.-F. Liu and X. Zhu in terms of the maximum upper density of *M*-avoiding sets for $M = \{\lambda_1, \lambda_2, \lambda_1 + \lambda_2\}$.

(0000)

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Schmidt-Tuller conjecture for packings and coverings (2008) Let $\lambda_1, \lambda_2 \in \mathbb{N}$ be two coprime integers. Then for $S = \{0, \lambda_1, \lambda_1 + \lambda_2\}$ we have $d_p(S) = \max\left(\frac{\lfloor \frac{1}{3}(\lambda_1 + 2\lambda_2) \rfloor}{\lambda_1 + 2\lambda_2}, \frac{\lfloor \frac{1}{3}(2\lambda_1 + \lambda_2) \rfloor}{2\lambda_1 + \lambda_2}\right),$ $d_c(S) = \min\left(\frac{\lceil \frac{1}{3}(\lambda_1 + 2\lambda_2) \rceil}{\lambda_1 + 2\lambda_2}, \frac{\lceil \frac{1}{3}(2\lambda_1 + \lambda_2) \rceil}{2\lambda_1 + \lambda_2}\right).$

The result for the packing density was proved in 2004 by D. D.-F. Liu and X. Zhu in terms of the maximum upper density of *M*-avoiding sets for $M = \{\lambda_1, \lambda_2, \lambda_1 + \lambda_2\}$. In 2022, N. Frankl, A. Kupavskii, A. Sagdeev proved both results in a unified way.

Lower bound

Theorem 1

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Let a, b be coprime positive integers. For $k, m \in \mathbb{N}$, let $d \in \mathbb{Z}$ and $0 \le r \le k + m$ be unique integers such that a - b = (k + m + 1)d + r. Then for $S = \{0, a, ..., ka, ka + b, ..., ka + mb\}$ and $M = \{ia + jb : 0 \le i \le k, 0 \le j \le m, i + j > 0\}$, we have $\left(\frac{1}{k+m+1}, \qquad r = 0, \right)$

$$\mu_{D}(S) = \mu(M) \ge \begin{cases} rac{k+m+1}{b+kd}, & 1 \le r, \ rac{b+kd}{ka+(m+1)b}, & 1 \le r \le m, \ rac{a-m(d+1)}{(k+1)a+mb}, & m+1 \le r \le k+m. \end{cases}$$

Upper bound

Theorem 2

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Let a, b be coprime positive integers. For $k \in \mathbb{N}$, let $d \in \mathbb{Z}$ and $0 \le r \le k+1$ be unique integers such that a-b = (k+2)d + r. Then for $S = \{0, a, \dots, ka, ka+b\}$ and $M = \{a, \dots, ka\} \cup \{b, a+b, \dots, ka+b\}$, we have $d_p(S) = \mu(M) = \begin{cases} \frac{1}{k+2}, & r = 0, \\ \frac{b+kd}{ka+2b}, & r = 1, \\ \frac{a-d-1}{(k+1)a+b}, & 2 \le r \le k+1. \end{cases}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Al	nde	
	hen	

Tilings, packings and coverings in 2

Sets with only two non-mixed gaps

Open problems

On the lower bound

Tilings, packings and

Sets with only two non-mixed gaps

Open problems

Set $A = \{t(a - b) : 0 \le t < b + kd\} + n\mathbb{Z}$, n = ka + (m + 1)b, is *S*-packing of the required density.

On the lower bound

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Set $A = \{t(a - b) : 0 \le t < b + kd\} + n\mathbb{Z}$, n = ka + (m + 1)b, is S-packing of the required density.

Lemma (Haralambis, 1977)

Let $M \subset \mathbb{N}$ and $\alpha \in (0, 1)$ be a real number. Suppose that for every *M*-avoiding set *M* with $0 \in A$ there exists *n* such that $A[n] = |A \cap [0, n-1]| \leq n\alpha$. Then $\mu(M) \leq \alpha$.

On the lower bound

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Set $A = \{t(a - b) : 0 \le t < b + kd\} + n\mathbb{Z}$, n = ka + (m + 1)b, is S-packing of the required density.

Lemma (Haralambis, 1977)

Let $M \subset \mathbb{N}$ and $\alpha \in (0,1)$ be a real number. Suppose that for every *M*-avoiding set *M* with $0 \in A$ there exists *n* such that $A[n] = |A \cap [0, n-1]| \leq n\alpha$. Then $\mu(M) \leq \alpha$.

On the upper bound

We prove that at least one of the integers $n_1 = ka + (m+1)b$ and $n_2 = (k+1)a + mb$ is suitable for every *M*-avoiding set *A* with $0 \in A$.

Alexander						
	tal			nł		

Tilings, packings and coverings in Z

Sets with only two non-mixe gaps

Open problems

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Problem 1

Is our lower bound tight for all sets S with only two non-mixed gaps? Any bounds on the covering density $d_c(S)$ for such sets?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Problem 1

Is our lower bound tight for all sets S with only two non-mixed gaps? Any bounds on the covering density $d_c(S)$ for such sets?

Problem 2

Any bounds on $d_p(S)$ and $d_c(S)$ for more complex configurations S with only two distances?

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Problem 1

Is our lower bound tight for all sets S with only two non-mixed gaps? Any bounds on the covering density $d_c(S)$ for such sets?

Problem 2

Any bounds on $d_p(S)$ and $d_c(S)$ for more complex configurations S with only two distances?

Conjecture (D. D.-F. Liu and X. Zhu, 2004)

If
$$M = \{x, y, y - x, x + y\}$$
, where $x < y$, $x = 2k + 1$,
 $y = 2m + 1$, then $\mu(M) = \frac{(k+1)m}{4(k+1)m+1}$.

Remark: for x, y of distinct parity, we have $\mu(M) = 1/4$.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Problem 3

Sharp asymptotic bounds on the packing density $d_p(S)$ of *k*-element subsets $S \subset \mathbb{Z}$ where $k \to \infty$.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Problem 3

Sharp asymptotic bounds on the packing density $d_p(S)$ of *k*-element subsets $S \subset \mathbb{Z}$ where $k \to \infty$.

Problem 4

Tight upper bounds on $d_c(S)$ for k-element subsets $S \subset \mathbb{Z}$, $k \ge 5$? Tight lower bounds on $d_p(S)$ for k-element subsets $S \subset \mathbb{Z}$, $k \ge 4$?

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixed gaps

Open problems

Problem 3

Sharp asymptotic bounds on the packing density $d_p(S)$ of *k*-element subsets $S \subset \mathbb{Z}$ where $k \to \infty$.

Problem 4

Tight upper bounds on $d_c(S)$ for k-element subsets $S \subset \mathbb{Z}$, $k \ge 5$? Tight lower bounds on $d_p(S)$ for k-element subsets $S \subset \mathbb{Z}$, $k \ge 4$?

Conjecture (B. Bollobás, S. Janson, O. Riordan, 2010)

For any 5-element set S we have $d_c(S) \leq \frac{3}{11}$. For any 6-element set S we have $d_c(S) \leq \frac{1}{4}$.

Alexander Natalchenko

Tilings, packings and coverings in Z

Sets with only two non-mixec gaps

Open problems

Problem 5

Can we find an explicit expression for the maximum upper density $\mu(M)$ of an *M*-avoiding set for an arbitrary triple $M = \{a, b, c\} \subset \mathbb{N}$?