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Tilings of Z

Definition
Let S ⊂ Z be a finite set. We say that S tiles Z if there exists
A ⊂ Z such that for every x ∈ Z there are unique a ∈ A, s ∈ S
such that x = a + s.

Set S1 = {0, 2, 4} tiles Z, but S2 = {0, 1, 3} does not. So, not
every set tiles Z.
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Overview: Tilings of Z

D.J. Newman (1977): Let s1, s2, ..., sk be distinct integers
with k = pα, p a prime, α a positive integer. For each
pair si , sj , i ̸= j , we denote by peij the highest power of p
which divides si − sj . The set S = {s1, s2, ..., sk} tiles the
integers if and only if there are at most α distinct eij .
E. M. Coven, A. Meyerovitz (1999): Characterization of
sets S that tile Z, |S | = pα1

1 pα2
2 with prime p1, p2.

I.  Laba , I. Londner (2022-2023): Characterization of
tilings with a period of length (p1p2p3)2 with prime p1,
p2, p3.
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Overview: Tilings of Z

D.J. Newman (1977): All tilings in Z by translates of
finite S are periodic.

E. M. Coven, A. Meyerovitz (1999): If S tiles Z, then
there is a tiling by S whose period is a product of powers
of the prime factors of |S |.
A. Biró (2005): There is a period of length at most
exp{D1/3+ε}, D = diam(S).
J. P. Steinberger (2009): The period can grow faster than
any power of the diameter of S .
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Packings and coverings in Z

If S ⊂ Z does not tile Z, we can consider some problems of a
similar nature.

Packings
A set A ⊂ Z is called S-packing if a1 + S and a2 + S are
disjoint for any distinct a1, a2 ∈ A.

Coverings
A set A ⊂ Z is called S-covering if each x ∈ Z belongs to
some translate a + S , a ∈ A.
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Packings and coverings in Z

Density

Upper density d(A) and lower density d(A) of set A ⊂ Z are

d(A) = lim sup
n→∞

A[−n, n]

2n + 1
, d = lim inf

n→∞

A[−n, n]

2n + 1
.

If d(A) = d(A) = d(A), then A has density d(A).

Packing density

Packing density dp(S) of S is defined as the maximum upper
density of an S-packing set.

Covering density

Covering density dc(S) of S-covering is defined as the
minimum lower density of an S-covering set.
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Overview: Packings in Z

Packings
A set A ⊂ Z is called S-packing if a1 + S and a2 + S are
disjoint for any distinct a1, a2 ∈ A.

Packing density

Packing density dp(S) of S is defined as the maximum upper
density of an S-packing set.

G. Weinstein (1976): For any k-element set S we have

dp(S) ≥ 2
k2 .

M. J. Golay (1972): For some sets |S | = k we have

dp(S) ≤ 2.646
k2 .
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M-avoiding sets

Integer distance graph

G (Z,M) is a graph with the vertex set Z where two vertices
v1, v2 ∈ Z are adjacent if and only if |v1 − v2| ∈ M.

M-avoiding set
A set A ⊂ Z is called M-avoiding if a1 − a2 ̸∈ M for every
a1, a2 ∈ A.

Independence ratio of an integer distance graph

Independence ratio µ(M) of G (Z,M) is the maximum upper
density of an M-avoiding set.
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M-avoiding sets

Packing density and independence ratio

For finite S ⊂ Z and M = {s2 − s1 : s1, s2 ∈ S , s1 < s2} we
have dp(S) = µ(M).

Proof.
Two distinct translates a1 + S and a2 + S share a common
point if and only if a1 + s1 = a2 + s2 for some s1 ̸= s2 ∈ S ,
which can be rewritten as a1 − a2 = s2 − s1.
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Overview: Independence ratio of G (Z,M)

G. J. Chang, D. D.-F. Liu, X. Zhu (1999):

µ(M) = 1/χf (G (Z,M)).

D. G. Cantor, B. Gordon (1973):
M = {a, b}, µ(M) = ⌊(a+b)/2⌋

2 .
S. Gupta (2000): for an arithmetical progression
M = {n, n + d , n + 2d , ..., n + (k − 1)d} we have

µ(M) =

{
2n+(k−1)(d−1)
2(2n+(k−1)d) , d is odd,

1
2 , d is even.

R. K. Pandey, A. Tripathi (2015): for a geometric
progression M = {ak , ak−1b, ..., abk−1, bk} we have
µ(M) = µ({a, b}) = ⌊(a+b)/2⌋

2 .
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Overview: Coverings of Z

Coverings
A set A ⊂ Z is called S-covering if each x ∈ Z belongs to
some translate a + S , a ∈ A.

Covering density

Covering density dc(S) of S-covering is defined as the
minimum lower density of an S-covering set.

D. J. Newman (1967): For any k-element set S we have
dc(S) ≤ (1 + o(1)) log kk where k → ∞.
D. J. Newman (1967): For any 3-elements set S we have
dc(S) ≤ 2

5 . It is tight if S = {0, 1, 3}.
M. Axenovich, J. Goldwasser, B. Lidický et al. (2019):
For any 4-elements set S we have dc(S) ≤ 1

3 . It is tight if
S = {0, 1, 2, 4}.
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Overview: Packings and coverings for |S | = 3

Schmidt–Tuller conjecture for packings and coverings (2008)

Let λ1, λ2 ∈ N be two coprime integers. Then for
S = {0, λ1, λ1 + λ2} we have

dp(S) = max

(⌊1
3(λ1 + 2λ2)

⌋
λ1 + 2λ2

,

⌊1
3(2λ1 + λ2)

⌋
2λ1 + λ2

)
,

dc(S) = min

(⌈1
3(λ1 + 2λ2)

⌉
λ1 + 2λ2

,

⌈1
3(2λ1 + λ2)

⌉
2λ1 + λ2

)
.

The result for the packing density was proved in 2004 by D.
D.-F. Liu and X. Zhu in terms of the maximum upper density
of M-avoiding sets for M = {λ1, λ2, λ1 + λ2}. In 2022, N.
Frankl, A. Kupavskii, A. Sagdeev proved both results in a
unified way.
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Lower bound

Theorem 1
Let a, b be coprime positive integers. For k ,m ∈ N, let d ∈ Z
and 0 ≤ r ≤ k + m be unique integers such that
a− b = (k + m + 1)d + r . Then for
S = {0, a, ..., ka, ka + b, ..., ka + mb} and
M = {ia + jb : 0 ≤ i ≤ k , 0 ≤ j ≤ m, i + j > 0}, we have

dp(S) = µ(M) ≥


1

k+m+1 , r = 0,
b+kd

ka+(m+1)b , 1 ≤ r ≤ m,
a−m(d+1)
(k+1)a+mb , m + 1 ≤ r ≤ k + m.



Alexander
Natalchenko

Tilings,
packings and
coverings in Z

Sets with only
two non-mixed
gaps

Open problems

Upper bound

Theorem 2
Let a, b be coprime positive integers. For k ∈ N, let d ∈ Z and
0 ≤ r ≤ k + 1 be unique integers such that
a− b = (k + 2)d + r . Then for S = {0, a, . . . , ka, ka + b} and
M = {a, . . . , ka} ∪ {b, a + b, . . . , ka + b}, we have

dp(S) = µ(M) =


1

k+2 , r = 0,
b+kd
ka+2b , r = 1,
a−d−1

(k+1)a+b , 2 ≤ r ≤ k + 1.
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Notes on the proof

On the lower bound
Set A = {t(a− b) : 0 ≤ t < b + kd} + nZ,
n = ka + (m + 1)b, is S-packing of the required density.

Lemma (Haralambis, 1977)

Let M ⊂ N and α ∈ (0, 1) be a real number. Suppose that for
every M-avoiding set M with 0 ∈ A there exists n such that
A[n] = |A ∩ [0, n − 1]| ≤ nα. Then µ(M) ≤ α.

On the upper bound

We prove that at least one of the integers n1 = ka + (m + 1)b
and n2 = (k + 1)a + mb is suitable for every M-avoiding set A
with 0 ∈ A.
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Open problems

Problem 1
Is our lower bound tight for all sets S with only two non-mixed
gaps? Any bounds on the covering density dc(S) for such sets?

Problem 2
Any bounds on dp(S) and dc(S) for more complex
configuratiions S with only two distances?

Conjecture (D. D.-F. Liu and X. Zhu, 2004)

If M = {x , y , y − x , x + y}, where x < y , x = 2k + 1,
y = 2m + 1, then µ(M) = (k+1)m

4(k+1)m+1 .

Remark: for x , y of distinct parity, we have µ(M) = 1/4.
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Open problems

Problem 3
Sharp asymptotic bounds on the packing density dp(S) of
k-element subsets S ⊂ Z where k → ∞.

Problem 4
Tight upper bounds on dc(S) for k-element subsets S ⊂ Z,
k ≥ 5? Tight lower bounds on dp(S) for k-element subsets
S ⊂ Z, k ≥ 4?

Conjecture (B. Bollobás, S. Janson, O. Riordan, 2010)

For any 5-element set S we have dc(S) ≤ 3
11 . For any

6-element set S we have dc(S) ≤ 1
4 .
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Open problems

Problem 5
Can we find an explicit expression for the maximum upper
density µ(M) of an M-avoiding set for an arbitrary triple
M = {a, b, c} ⊂ N ?
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