News on polychromatic colorings

Dömötör Pálvölgyi

Hogwarts School of Witchcraft and Wizardry

Discrete Geometry Days³

BME 2024

向下 イヨト イヨト

< (T) >

★ E ► ★ E ►

臣

We can color vertices or (hyper)edges.

∢ ≣⇒

We can color vertices or (hyper)edges.

This talk focuses on vertices.

We can color vertices or (hyper)edges. This talk focuses on vertices.

Different colorings:

We can color vertices or (hyper)edges. This talk focuses on vertices.

Different colorings:

In each edge

1. proper: not all have same color

We can color vertices or (hyper)edges. This talk focuses on vertices.

Different colorings:

In each edge

- 1. proper: not all have same color
- 2. strong/rainbow: all have different colors

We can color vertices or (hyper)edges. This talk focuses on vertices.

Different colorings:

In each edge

- 1. proper: not all have same color
- 2. strong/rainbow: all have different colors
- 3. *polychromatic:* every color appears

We can color vertices or (hyper)edges. This talk focuses on vertices.

Different colorings:

In each edge

- 1. proper: not all have same color
- 2. strong/rainbow: all have different colors
- 3. *polychromatic:* every color appears

4. ...

We can color vertices or (hyper)edges.

This talk focuses on vertices.

Different colorings:

In each edge

- 1. proper: not all have same color
- 2. strong/rainbow: all have different colors
- 3. polychromatic: every color appears

4. ...

We will study proper (1) and polychromatic (3) colorings of hypergraphs in which all hyperedges are big/heavy.

We can color vertices or (hyper)edges.

This talk focuses on vertices.

Different colorings:

In each edge

- 1. proper: not all have same color
- 2. strong/rainbow: all have different colors
- 3. polychromatic: every color appears

4. ...

We will study proper (1) and polychromatic (3) colorings of hypergraphs in which all hyperedges are big/heavy.

Before abstract definitions, geometric examples.

Dömötör Pálvölgyi News on polychromatic colorings

ヘロア 人間 アメヨア 人間 アー

Theorem (1-dim polychromatic coloring)

Every $X \subset \mathbb{R}$ can be colored with k colors such that every interval with $\geq k$ points from X is polychromatic (i.e., contains all k colors).

Theorem (1-dim polychromatic coloring)

Every $X \subset \mathbb{R}$ can be colored with k colors such that every interval with $\geq k$ points from X is polychromatic (i.e., contains all k colors).

Proof for finite *X*:

Theorem (1-dim polychromatic coloring)

Every $X \subset \mathbb{R}$ can be colored with k colors such that every interval with $\geq k$ points from X is polychromatic (i.e., contains all k colors).

Proof for finite X (and k = 3):

Theorem (1-dim polychromatic coloring)

Every $X \subset \mathbb{R}$ can be colored with k colors such that every interval with $\geq k$ points from X is polychromatic (i.e., contains all k colors).

Proof for finite X (and k = 3):

Theorem (1-dim polychromatic coloring)

Every $X \subset \mathbb{R}$ can be colored with k colors such that every interval with $\geq k$ points from X is polychromatic (i.e., contains all k colors).

Theorem (1-dim cover-decomposition)

If collection \mathcal{I} of intervals covers some $X \subset \mathbb{R}$ k-fold, then $\exists \mathcal{I}_1 \cup^* \ldots \cup^* \mathcal{I}_k = \mathcal{I}$ such that each \mathcal{I}_i covers X.

Theorem (1-dim polychromatic coloring)

Every $X \subset \mathbb{R}$ can be colored with k colors such that every interval with $\geq k$ points from X is polychromatic (i.e., contains all k colors).

Theorem (1-dim cover-decomposition)

If collection \mathcal{I} of intervals covers some $X \subset \mathbb{R}$ k-fold, then $\exists \mathcal{I}_1 \cup^* \ldots \cup^* \mathcal{I}_k = \mathcal{I}$ such that each \mathcal{I}_i covers X.

Theorem (1-dim polychromatic coloring)

Every $X \subset \mathbb{R}$ can be colored with k colors such that every interval with $\geq k$ points from X is polychromatic (i.e., contains all k colors).

Theorem (1-dim cover-decomposition)

If collection \mathcal{I} of intervals covers some $X \subset \mathbb{R}$ k-fold, then $\exists \mathcal{I}_1 \cup^* \ldots \cup^* \mathcal{I}_k = \mathcal{I}$ such that each \mathcal{I}_i covers X.

Theorem (1-dim polychromatic coloring)

Every $X \subset \mathbb{R}$ can be colored with k colors such that every interval with $\geq k$ points from X is polychromatic (i.e., contains all k colors).

Theorem (1-dim cover-decomposition)

If collection \mathcal{I} of intervals covers some $X \subset \mathbb{R}$ k-fold, then $\exists \mathcal{I}_1 \cup^* \ldots \cup^* \mathcal{I}_k = \mathcal{I}$ such that each \mathcal{I}_i covers X.

Lower are called *dual* range spaces—in this talk we mainly consider upper, so-called *primal* range spaces, i.e., coloring points.

Halfplanes show that situation is more complex in plane.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

Halfplanes show that situation is more complex in plane.

٠

・ 回 ト ・ ヨ ト ・ ヨ ト ・

Halfplanes show that situation is more complex in plane.

・ 回 ト ・ ヨ ト ・ ヨ ト ・

Halfplanes show that situation is more complex in plane.

∢ ≣⇒

Halfplanes show that situation is more complex in plane.

Theorem (Smorodinsky-Yuditsky '12)

We can color any finite $X \subset \mathbb{R}^2$ with k colors such that every halfplane with at least $m_k = 2k - 1$ points contains all k colors.

Theorem (Smorodinsky-Yuditsky '12) We can color any finite $X \subset \mathbb{R}^2$ with k colors such that every halfplane with at least $m_k = 2k - 1$ points contains all k colors. Sharpness shown by any 2k - 1 points in convex position:

Theorem (Smorodinsky-Yuditsky '12) We can color any finite $X \subset \mathbb{R}^2$ with k colors such that every halfplane with at least $m_k = 2k - 1$ points contains all k colors. Sharpness shown by any 2k - 1 points in convex position:

Theorem (Smorodinsky-Yuditsky '12)

We can color any finite $X \subset \mathbb{R}^2$ with k colors such that every halfplane with at least $m_k = 2k - 1$ points contains all k colors.

Lines

Theorem (Pach-Tardos-Tóth '05)

For every k, m there is a finite $X \subset \mathbb{R}^2$ such that for every k-coloring of X there is a line that contains at least m points from X and all have the same color.

.

Theorem (Pach-Tardos-Tóth '05)

For every k, m there is a finite $X \subset \mathbb{R}^2$ such that for every k-coloring of X there is a line that contains at least m points from X and all have the same color.

Theorem (Hales-Jewett '63)

For every k, m there is a d such that for every k-coloring of the d-dimensional grid $X = \{1, ..., m\}^d$ there is a line that contains m points from X and all have the same color.

Theorem (Pach-Tardos-Tóth '05)

For every k, m there is a finite $X \subset \mathbb{R}^2$ such that for every k-coloring of X there is a line that contains at least m points from X and all have the same color.

Theorem (Hales-Jewett '63)

For every k, m there is a d such that for every k-coloring of the d-dimensional grid $X = \{1, ..., m\}^d$ there is a line that contains m points from X and all have the same color.

 $HJ \Rightarrow PTT$: Take a generic projection of $\{1, \ldots, m\}^d$ to \mathbb{R}^2 . \Box

向 ト イヨ ト イヨト

Theorem (Pach-Tardos-Tóth '05)

For every k, m there is a finite $X \subset \mathbb{R}^2$ such that for every k-coloring of X there is a line that contains at least m points from X and all have the same color.

Theorem (Hales-Jewett '63)

For every k, m there is a d such that for every k-coloring of the d-dimensional grid $X = \{1, ..., m\}^d$ there is a line that contains m points from X and all have the same color.

 $HJ \Rightarrow PTT$: Take a generic projection of $\{1, \ldots, m\}^d$ to \mathbb{R}^2 . From the point-line duality of \mathbb{R}^2 we get:

Theorem (Pach-Tardos-Tóth '05)

For every k, m^* there is a finite collection of lines \mathcal{L} in the plane such that for every k-coloring of \mathcal{L} there is a point contained in at least m^* lines from \mathcal{L} and all have the same color.

同ト・モト・モト

For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, denote by m_k the smallest number for which we can k-color any finite $X \subset V$ such that for any $E \in \mathcal{E}$ with $|E \cap X| \ge m_k$ all k colors occur in $E \cap X$.

For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, denote by m_k the smallest number for which we can k-color any finite $X \subset V$ such that for any $E \in \mathcal{E}$ with $|E \cap X| \ge m_k$ all k colors occur in $E \cap X$.

For intervals $m_k = k$, for halfplanes $m_k = 2k - 1$.

.

For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, denote by m_k the smallest number for which we can k-color any finite $X \subset V$ such that for any $E \in \mathcal{E}$ with $|E \cap X| \ge m_k$ all k colors occur in $E \cap X$. For intervals $m_k = k$, for halfplanes $m_k = 2k - 1$. $m_k = \infty$ is possible, e.g., for lines.

.

For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, denote by m_k the smallest number for which we can k-color any finite $X \subset V$ such that for any $E \in \mathcal{E}$ with $|E \cap X| \ge m_k$ all k colors occur in $E \cap X$.

For intervals $m_k = k$, for halfplanes $m_k = 2k - 1$.

 $m_k = \infty$ is possible, e.g., for lines.

Important: In the induced hypergraph $\mathcal{H}|_X$ we only care about m_k -heavy edges.

• • = • • = •
For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, denote by m_k the smallest number for which we can k-color any finite $X \subset V$ such that for any $E \in \mathcal{E}$ with $|E \cap X| \ge m_k$ all k colors occur in $E \cap X$.

For intervals $m_k = k$, for halfplanes $m_k = 2k - 1$.

 $m_k = \infty$ is possible, e.g., for lines.

Important: In the induced hypergraph $\mathcal{H}|_X$ we only care about m_k -heavy edges. This is m_k -fat induced subhypergraph of \mathcal{H} .

向下 イヨト イヨト

For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, denote by m_k the smallest number for which we can k-color any finite $X \subset V$ such that for any $E \in \mathcal{E}$ with $|E \cap X| \ge m_k$ all k colors occur in $E \cap X$.

For intervals $m_k = k$, for halfplanes $m_k = 2k - 1$.

 $m_k = \infty$ is possible, e.g., for lines.

Important: In the induced hypergraph $\mathcal{H}|_X$ we only care about m_k -heavy edges. This is m_k -fat induced subhypergraph of \mathcal{H} .

Same for chromatic number: $\chi_{fat} = \min\{k : \exists m \text{ there is a proper } k\text{-coloring of } m\text{-fat induced subhypergraphs}\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, denote by m_k the smallest number for which we can k-color any finite $X \subset V$ such that for any $E \in \mathcal{E}$ with $|E \cap X| \ge m_k$ all k colors occur in $E \cap X$.

For intervals $m_k = k$, for halfplanes $m_k = 2k - 1$.

 $m_k = \infty$ is possible, e.g., for lines.

Important: In the induced hypergraph $\mathcal{H}|_X$ we only care about m_k -heavy edges. This is m_k -fat induced subhypergraph of \mathcal{H} .

Same for chromatic number: $\chi_{fat} = \min\{k : \exists m \text{ there is a proper } k\text{-coloring of } m\text{-fat induced subhypergraphs}\}$. $\chi_{fat} = \infty$ for lines.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, denote by m_k the smallest number for which we can k-color any finite $X \subset V$ such that for any $E \in \mathcal{E}$ with $|E \cap X| \ge m_k$ all k colors occur in $E \cap X$.

For intervals $m_k = k$, for halfplanes $m_k = 2k - 1$.

 $m_k = \infty$ is possible, e.g., for lines.

Important: In the induced hypergraph $\mathcal{H}|_X$ we only care about m_k -heavy edges. This is m_k -fat induced subhypergraph of \mathcal{H} .

Same for chromatic number: $\chi_{fat} = \min\{k : \exists m \text{ there is a proper } k\text{-coloring of } m\text{-fat induced subhypergraphs}\}$. $\chi_{fat} = \infty$ for lines.

From defs:
$$\chi_{fat} = 2 \iff m_2 < \infty$$

 $m_k \le m_{k+1}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Back to Geometry: Translates

Conjecture (Pach '80)

Thick coverings of the plane by translates of any convex planar range are decomposable into two coverings.

Conjecture (Pach '80)

For every planar convex set D there is an m such that we can color any finite $X \subset \mathbb{R}^2$ with two colors such that every translate of Dwith at least m points contains both colors, i.e., $\chi_{fat} = 2$.

Conjecture (Pach '80)

For every planar convex set D there is an m such that we can color any finite $X \subset \mathbb{R}^2$ with two colors such that every translate of Dwith at least m points contains both colors, i.e., $\chi_{fat} = 2$.

Theorem (P.-Tóth '10; Gibson-Varadarajan '11)

True for convex polygons. Even $m_k = O(k)$ for convex polygons.

Conjecture (Pach '80)

For every planar convex set D there is an m such that we can color any finite $X \subset \mathbb{R}^2$ with two colors such that every translate of Dwith at least m points contains both colors, i.e., $\chi_{fat} = 2$.

Theorem (P.-Tóth '10; Gibson-Varadarajan '11) True for convex polygons. Even $m_k = O(k)$ for convex polygons.

Theorem (P. '13, Pach-P. '16)

For every m there is a finite $X \subset \mathbb{R}^2$ such that for every two-coloring of X there is a unit disk that contains at least m points from X and all have the same color, i.e., $\chi_{fat} > 2$.

Conjecture (Pach '80)

For every planar convex set D there is an m such that we can color any finite $X \subset \mathbb{R}^2$ with two colors such that every translate of Dwith at least m points contains both colors, i.e., $\chi_{fat} = 2$.

Theorem (P.-Tóth '10; Gibson-Varadarajan '11) True for convex polygons. Even $m_k = O(k)$ for convex polygons.

Theorem (P. '13, Pach-P. '16)

For every m there is a finite $X \subset \mathbb{R}^2$ such that for every two-coloring of X there is a unit disk that contains at least m points from X and all have the same color, i.e., $\chi_{fat} > 2$.

Corollary: There is a 1000-fold covering of the plane by unit disks that cannot be decomposed into two coverings.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture (Pach '80)

For every planar convex set D there is an m such that we can color any finite $X \subset \mathbb{R}^2$ with two colors such that every translate of Dwith at least m points contains both colors, i.e., $\chi_{fat} = 2$.

Theorem (P.-Tóth '10; Gibson-Varadarajan '11) True for convex polygons. Even $m_k = O(k)$ for convex polygons.

Theorem (P. '13, Pach-P. '16)

For every *m* there is a finite $X \subset \mathbb{R}^2$ such that for every two-coloring of *X* there is a unit disk that contains at least *m* points from *X* and all have the same color, i.e., $\chi_{fat} > 2$.

Corollary: There is a 1000-fold covering of the plane by unit disks that cannot be decomposed into two coverings.

Is Pach's conjecture true if we can use more colors?

A B K A B K

Theorem: Any finite $X \subset \mathbb{R}^2$ can be four-colored such that any disk with at least 2 points is non-monochromatic, thus, $\chi_{fat} \leq 4$.

Theorem: Any finite $X \subset \mathbb{R}^2$ can be four-colored such that any disk with at least 2 points is non-monochromatic, thus, $\chi_{fat} \leq 4$. Delaunay triangulation: Connect two points of X if there is a disk that contains only them from X.

Lemma: Delaunay triangulation is planar graph.

Theorem: Any finite $X \subset \mathbb{R}^2$ can be four-colored such that any disk with at least 2 points is non-monochromatic, thus, $\chi_{fat} \leq 4$. Delaunay triangulation: Connect two points of X if there is a disk that contains only them from X.

Lemma: Delaunay triangulation is planar graph. We can apply the Four Color Theorem.

Conjecture (Keszegh '08, Keszegh-P. '17)

For every planar convex D there is an m such that any finite $X \subset \mathbb{R}^2$ can be 3-colored such that every homothet of D with m points is non-monochromatic, i.e., $\chi_{fat} \leq 3$.

Conjecture (Keszegh '08, Keszegh-P. '17)

For every planar convex D there is an m such that any finite $X \subset \mathbb{R}^2$ can be 3-colored such that every homothet of D with m points is non-monochromatic, i.e., $\chi_{fat} \leq 3$.

Theorem (Keszegh-P. '17) True if D is convex polygon.

Conjecture (Keszegh '08, Keszegh-P. '17)

For every planar convex D there is an m such that any finite $X \subset \mathbb{R}^2$ can be 3-colored such that every homothet of D with m points is non-monochromatic, i.e., $\chi_{fat} \leq 3$.

Theorem (Keszegh-P. '17)

True if D is convex polygon.

Could even be true with 2 colors for homothets of convex polygons;

Conjecture (Keszegh '08, Keszegh-P. '17)

For every planar convex D there is an m such that any finite $X \subset \mathbb{R}^2$ can be 3-colored such that every homothet of D with m points is non-monochromatic, i.e., $\chi_{fat} \leq 3$.

Theorem (Keszegh-P. '17)

True if D is convex polygon.

Could even be true with 2 colors for homothets of convex polygons; known for homothets of triangles (Keszegh-P. '11),

Conjecture (Keszegh '08, Keszegh-P. '17)

For every planar convex D there is an m such that any finite $X \subset \mathbb{R}^2$ can be 3-colored such that every homothet of D with m points is non-monochromatic, i.e., $\chi_{fat} \leq 3$.

Theorem (Keszegh-P. '17)

True if D is convex polygon.

Could even be true with 2 colors for homothets of convex polygons; known for homothets of triangles (Keszegh-P. '11),

known for homothets of squares (Ackerman-Keszegh-Vizer '16).

Conjecture (Keszegh '08, Keszegh-P. '17)

For every planar convex D there is an m such that any finite $X \subset \mathbb{R}^2$ can be 3-colored such that every homothet of D with m points is non-monochromatic, i.e., $\chi_{fat} \leq 3$.

Theorem (Keszegh-P. '17)

True if D is convex polygon.

Could even be true with 2 colors for homothets of convex polygons; known for homothets of triangles (Keszegh-P. '11),

known for homothets of squares (Ackerman-Keszegh-Vizer '16).

What about disks?

Theorem (Pach-Tardos-Tóth '05)

For every *m* there is a finite $X \subset \mathbb{R}^2$ such that for every 2-coloring of *X* there is a disk that contains at least *m* points from *X* and all have the same color, i.e., $\chi_{fat} > 2$.

Theorem (Pach-Tardos-Tóth '05)

For every *m* there is a finite $X \subset \mathbb{R}^2$ such that for every 2-coloring of *X* there is a disk that contains at least *m* points from *X* and all have the same color, i.e., $\chi_{fat} > 2$.

Theorem (Damásdi-P. '22)

For every *m* there is a finite $X \subset \mathbb{R}^2$ such that for every 3-coloring of *X* there is a disk that contains at least *m* points from *X* and all have the same color, i.e., $\chi_{fat} > 3$.

Theorem (Pach-Tardos-Tóth '05)

For every *m* there is a finite $X \subset \mathbb{R}^2$ such that for every 2-coloring of *X* there is a disk that contains at least *m* points from *X* and all have the same color, i.e., $\chi_{fat} > 2$.

Theorem (Damásdi-P. '22)

For every *m* there is a finite $X \subset \mathbb{R}^2$ such that for every 3-coloring of *X* there is a disk that contains at least *m* points from *X* and all have the same color, i.e., $\chi_{fat} > 3$.

So Keszegh-P. conjecture is false for disks; from Delaunay-triangulation we know $\chi_{fat} = 4$.

Theorem (Pach-Tardos-Tóth '05)

For every *m* there is a finite $X \subset \mathbb{R}^2$ such that for every 2-coloring of *X* there is a disk that contains at least *m* points from *X* and all have the same color, i.e., $\chi_{fat} > 2$.

Theorem (Damásdi-P. '22)

For every *m* there is a finite $X \subset \mathbb{R}^2$ such that for every 3-coloring of *X* there is a disk that contains at least *m* points from *X* and all have the same color, i.e., $\chi_{fat} > 3$.

So Keszegh-P. conjecture is false for disks; from Delaunay-triangulation we know $\chi_{fat} = 4$.

Theorem (Damásdi-P. '22+)

For translates of any convex planar shape $\chi_{fat} \leq 3$.

Summary for Disks

	unit disks	any disks
stabbed	$\chi_{fat} = 2$ $m_k = O(k)$ Damásdi-P. '22	$\chi_{fat} = 3$ Damásdi-P. '22 Ackerman-Keszegh-P. '19
all	χ _{fat} = 3 Ρ. '13, Pach-P. '16 Damásdi-P. '22+	$\chi_{fat} = 4$ Four Color Theorem Damásdi-P. '22

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

æ

THIS GUY IS AN IDIOT

Dömötör Pálvölgyi News on polychromatic colorings

イロン イヨン イヨン イヨン

Э

Summary for Disks

	unit disks	any disks
stabbed	$\chi_{fat} = 2$ $m_k = O(k)$ Damásdi-P. '22	$\chi_{fat} = 3$ Damásdi-P. '22 Ackerman-Keszegh-P. '19
all	χ _{fat} = 3 Ρ. '13, Pach-P. '16 Damásdi-P. '22+	$\chi_{fat} = 4$ Four Color Theorem Damásdi-P. '22

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

æ

Theorem (P. '10)

For every polyhedron $P \subset \mathbb{R}^3$ and m there is a finite $X \subset \mathbb{R}^3$ such that for every two-coloring of X there is a monochromatic translate of P that contains at least m points from X, i.e., $\chi_{fat} > 2$.

Theorem (P. '10)

For every polyhedron $P \subset \mathbb{R}^3$ and m there is a finite $X \subset \mathbb{R}^3$ such that for every two-coloring of X there is a monochromatic translate of P that contains at least m points from X, i.e., $\chi_{fat} > 2$.

Theorem (Keszegh-P. '11, '15)

Any finite $X \subset \mathbb{R}^3$ can be two-colored such that any translate of an octant with 9 points is non-monochromatic, therefore, $\chi_{fat} = 2$.

Theorem (P. '10)

For every polyhedron $P \subset \mathbb{R}^3$ and m there is a finite $X \subset \mathbb{R}^3$ such that for every two-coloring of X there is a monochromatic translate of P that contains at least m points from X, i.e., $\chi_{fat} > 2$.

Theorem (Keszegh-P. '11, '15)

Any finite $X \subset \mathbb{R}^3$ can be two-colored such that any translate of an octant with 9 points is non-monochromatic, therefore, $\chi_{fat} = 2$.

Corollary

Any finite $X \subset \mathbb{R}^2$ can be two-colored such that any homothet of a triangle with 9 points is non-monochromatic.

Theorem (Keszegh-P. '11, '15)

Any finite $X \subset \mathbb{R}^3$ can be two-colored such that any translate of an octant with 9 points is non-monochromatic, therefore, $\chi_{fat} = 2$.

Corollary

Any finite $X \subset \mathbb{R}^2$ can be two-colored such that any homothet of a triangle with 9 points is non-monochromatic.

Proof: Embed plane

into \mathbb{R}^3 as

x + y + z = 0.

Theorem (Keszegh-P. '11, '15)

Any finite $X \subset \mathbb{R}^3$ can be two-colored such that any translate of an octant with 9 points is non-monochromatic, therefore, $\chi_{fat} = 2$.

Corollary

Any finite $X \subset \mathbb{R}^2$ can be two-colored such that any axis-parallel bottomless rectangle with 9 points is non-monochromatic.

Theorem (Keszegh-P. '11, '15)

Any finite $X \subset \mathbb{R}^3$ can be two-colored such that any translate of an octant with 9 points is non-monochromatic, therefore, $\chi_{fat} = 2$.

Theorem (Cardinal, Knauer, Micek, Ueckerdt (+ KP) '15) Any finite $X \subset \mathbb{R}^3$ can be k-colored such that any translate of an octant with $m_k = O(k^{5.09})$ points contains all k colors.
Three Dimensions

Theorem (Keszegh-P. '11, '15)

Any finite $X \subset \mathbb{R}^3$ can be two-colored such that any translate of an octant with 9 points is non-monochromatic, therefore, $\chi_{fat} = 2$.

Theorem (Cardinal, Knauer, Micek, Ueckerdt (+ KP) '15) Any finite $X \subset \mathbb{R}^3$ can be k-colored such that any translate of an octant with $m_k = O(k^{5.09})$ points contains all k colors.

Corollary

Same for (dual) homothets of a triangle, bottomless rectangles.

Three Dimensions

Theorem (Keszegh-P. '11, '15)

Any finite $X \subset \mathbb{R}^3$ can be two-colored such that any translate of an octant with 9 points is non-monochromatic, therefore, $\chi_{fat} = 2$.

Theorem (Cardinal, Knauer, Micek, Ueckerdt (+ KP) '15) Any finite $X \subset \mathbb{R}^3$ can be k-colored such that any translate of an octant with $m_k = O(k^{5.09})$ points contains all k colors.

Corollary

Same for (dual) homothets of a triangle, bottomless rectangles.

Theorem (Cardinal-Korman '11)

For orthants in \geq 4-dimension $\chi_{fat} = \infty$.

Three Dimensions

Theorem (Keszegh-P. '11, '15)

Any finite $X \subset \mathbb{R}^3$ can be two-colored such that any translate of an octant with 9 points is non-monochromatic, therefore, $\chi_{fat} = 2$.

Theorem (Cardinal, Knauer, Micek, Ueckerdt (+ KP) '15) Any finite $X \subset \mathbb{R}^3$ can be k-colored such that any translate of an octant with $m_k = O(k^{5.09})$ points contains all k colors.

Corollary

Same for (dual) homothets of a triangle, bottomless rectangles.

Theorem (Cardinal-Korman '11)

For orthants in \geq 4-dimension $\chi_{fat} = \infty$.

Follows from realizing all axis-parallel rectangles and from

Theorem (Chen-Pach-Szegedy-Tardos '09)

For all axis-parallel rectangles $\chi_{fat} = \infty$.

• (1) • (

Bottomless Rectangles

Theorem (Keszegh '11, Asinowski, Cardinal, Cohen, Collette, Hackl, Hoffmann, Knauer, Langerman, Lason, Micek, Rote, Ueckerdt '13)

Any finite $X \subset \mathbb{R}^2$ can be k-colored such that any axis-parallel bottomless rectangle with $m_k \leq 3k - 2$ points contains all k colors.

Theorem (Cardinal, Knauer, Micek, Ueckerdt (+ KP) '15) Any finite collection of axis-parallel bottomless rectangles can be k-colored such any point covered by $m_k^* = O(k^{5.09})$ rectangles is covered by all k colors.

We do not know matching lower bounds.

Theorem (Cardinal, Knauer, Micek, P., Ueckerdt, Varadarajan) $m_k^* \leq 2k - 1$ in many special cases.

(日本) (日本) (日本)

Hereditary k-colorability of Abstract Hypergraphs

For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, denote by m_k the smallest number for which we can k-color any finite $X \subset V$ such that for any $E \in \mathcal{E}$ with $|E \cap X| \ge m_k$ all k colors occur in $E \cap X$. For intervals $m_k = k$, for halfplanes $m_k = 2k - 1$. $m_k = \infty$ is possible, e.g., for lines. Important: In the induced hypergraph $\mathcal{H}|_X$ we only care about m_k -heavy edges. This is m_k -fat induced subhypergraph of \mathcal{H} . Same for chromatic number: $\chi_{fat} = \min\{k : \exists m \text{ there is a proper}\}$ *k*-coloring of *m*-fat induced subhypergraphs}. $\chi_{fat} = \infty$ for lines. From defs: $\chi_{fat} = 2 \iff m_2 < \infty$

 $m_k \leq m_{k+1}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Hereditary k-colorability of Abstract Hypergraphs

For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, denote by m_k the smallest number for which we can k-color any finite $X \subset V$ such that for any $E \in \mathcal{E}$ with $|E \cap X| \ge m_k$ all k colors occur in $E \cap X$. For intervals $m_k = k$, for halfplanes $m_k = 2k - 1$. $m_k = \infty$ is possible, e.g., for lines. Important: In the induced hypergraph $\mathcal{H}|_X$ we only care about m_k -heavy edges. This is m_k -fat induced subhypergraph of \mathcal{H} . Same for chromatic number: $\chi_{fat} = \min\{k : \exists m \text{ there is a proper}\}$ *k*-coloring of *m*-fat induced subhypergraphs}. $\chi_{fat} = \infty$ for lines. From defs: $\chi_{fat} = 2 \iff m_2 < \infty$ $m_k < m_{k+1}$

Can we bound m_k with a function of m_2 ?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Berge '72)

For hereditary families $m_2 = 2$ if and only if $m_k = k$ for every k.

臣

< 注 ▶ < 注 ▶ ...

Theorem (Berge '72)

For hereditary families $m_2 = 2$ if and only if $m_k = k$ for every k.

Proof sketch of $m_2 = 2 \Rightarrow m_3 = 3$.

SEE BLACKBOARD!

Theorem (Berge '72)

For hereditary families $m_2 = 2$ if and only if $m_k = k$ for every k.

Proof sketch of $m_2 = 2 \Rightarrow m_3 = 3$.

If some *E* has two reds but no blues, re-2-color $X' = \text{reds} \cup \text{blues}$.

Theorem (Berge '72)

For hereditary families $m_2 = 2$ if and only if $m_k = k$ for every k.

Proof sketch of $m_2 = 2 \Rightarrow m_3 = 3$.

If some *E* has two reds but no blues, re-2-color $X' = \text{reds} \cup \text{blues}$. What about larger m_2 ?

Theorem (Berge '72)

For hereditary families $m_2 = 2$ if and only if $m_k = k$ for every k.

Proof sketch of $m_2 = 2 \Rightarrow m_3 = 3$.

If some *E* has two reds but no blues, re-2-color $X' = \text{reds} \cup \text{blues}$. What about larger m_2 ?

Question

Does $m_2 = 3$ imply any upper bound on m_3 ?

Theorem (Berge '72)

For hereditary families $m_2 = 2$ if and only if $m_k = k$ for every k.

Proof sketch of $m_2 = 2 \Rightarrow m_3 = 3$.

If some *E* has two reds but no blues, re-2-color $X' = \text{reds} \cup \text{blues}$. What about larger m_2 ?

Question

Does $m_2 = 3$ imply any upper bound on m_3 ?

The best constructions we saw gave $m_k = 2k - 1$:

Theorem (Berge '72)

For hereditary families $m_2 = 2$ if and only if $m_k = k$ for every k.

Proof sketch of $m_2 = 2 \Rightarrow m_3 = 3$.

If some *E* has two reds but no blues, re-2-color $X' = \text{reds} \cup \text{blues}$. What about larger m_2 ?

Question

Does $m_2 = 3$ imply any upper bound on m_3 ?

The best constructions we saw gave $m_k = 2k - 1$: Halfplanes;

A 3 6 A 3 6 6

Theorem (Berge '72)

For hereditary families $m_2 = 2$ if and only if $m_k = k$ for every k.

Proof sketch of $m_2 = 2 \Rightarrow m_3 = 3$.

If some *E* has two reds but no blues, re-2-color $X' = \text{reds} \cup \text{blues}$. What about larger m_2 ?

Question

Does $m_2 = 3$ imply any upper bound on m_3 ?

The best constructions we saw gave $m_k = 2k - 1$: Halfplanes; Union of two intervals;

Theorem (Berge '72)

For hereditary families $m_2 = 2$ if and only if $m_k = k$ for every k.

Proof sketch of $m_2 = 2 \Rightarrow m_3 = 3$.

If some *E* has two reds but no blues, re-2-color $X' = \text{reds} \cup \text{blues}$. What about larger m_2 ?

Question

Does $m_2 = 3$ imply any upper bound on m_3 ?

The best constructions we saw gave $m_k = 2k - 1$: Halfplanes; Union of two intervals; For dual bottomless rectangles and dual halfplanes:

 $m_2^* = 3$ but we don't know whether $m_k^* = 2k - 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (P. '23+)

There exists a 5-uniform hypergraph that has no polychromatic 3-coloring, but its 3-fat induced subhypergraphs are 2-colorable. Therefore, $m_3 = 6$ and $m_2 = 3$.

Theorem (P. '23+)

There exists a 5-uniform hypergraph that has no polychromatic 3-coloring, but its 3-fat induced subhypergraphs are 2-colorable. Therefore, $m_3 = 6$ and $m_2 = 3$.

Observation: If independence number $\alpha < \frac{k-1}{k}|V|$, then there is no polychromatic *k*-coloring.

Theorem (P. '23+)

There exists a 5-uniform hypergraph that has no polychromatic 3-coloring, but its 3-fat induced subhypergraphs are 2-colorable. Therefore, $m_3 = 6$ and $m_2 = 3$.

Observation: If independence number $\alpha < \frac{k-1}{k}|V|$, then there is no polychromatic *k*-coloring.

Goal: Find 5-uniform hypergraph on 8 vertices with $m_2 = 3$ where every pair of vertices is avoided by a hyperedge $\Rightarrow \alpha \le 5 < \frac{2}{3} \cdot 8$.

Goal: Find 5-uniform hypergraph on 8 vertices such that every pair of vertices is avoided by a hyperedge $\Rightarrow \alpha \le 5 < \frac{2}{3} \cdot 8$.

Figure: The *complement* of the hypergraph. The red dashed curved edges also contain vertex 8, i.e., they correspond to the complements of the edges that avoid vertex 8.

Goal: Find 5-uniform hypergraph on 8 vertices such that every pair of vertices is avoided by a hyperedge $\Rightarrow \alpha \le 5 < \frac{2}{3} \cdot 8$.

Figure: The *complement* of the hypergraph. The red dashed curved edges also contain vertex 8, i.e., they correspond to the complements of the edges that avoid vertex 8. Why these reds are needed???

Goal: Find 5-uniform hypergraph on 8 vertices such that every pair of vertices is avoided by a hyperedge $\Rightarrow \alpha \le 5 < \frac{2}{3} \cdot 8$.

Figure: The *complement* of the hypergraph. The red dashed curved edges also contain vertex 8, i.e., they correspond to the complements of the edges that avoid vertex 8. Why these reds are needed??? No $K_5^{(3)}$.

Goal: Find 5-uniform hypergraph on 8 vertices such that every pair of vertices is avoided by a hyperedge $\Rightarrow \alpha \le 5 < \frac{2}{3} \cdot 8$.

Figure: The *complement* of the hypergraph. The red dashed curved edges also contain vertex 8, i.e., they correspond to the complements of the edges that avoid vertex 8. Why these reds are needed??? No $K_5^{(3)}$.

Can we get better separations for $m_2 = 3$ than $m_3 = 6$?

Goal: Find 5-uniform hypergraph on 8 vertices such that every pair of vertices is avoided by a hyperedge $\Rightarrow \alpha \le 5 < \frac{2}{3} \cdot 8$.

Figure: The *complement* of the hypergraph. The red dashed curved edges also contain vertex 8, i.e., they correspond to the complements of the edges that avoid vertex 8. Why these reds are needed??? No $K_5^{(3)}$.

Can we get better separations for $m_2 = 3$ than $m_3 = 6$? Does $m_2 < \infty$ imply $m_k < \infty$?

