Variations of the Menger Embedding Theorem

Arsenii Sagdeev

Alfréd Rényi Institute of Mathematics, Budapest, Hungary sagdeevarsenii@gmail.com

> joint work with Konrad Swanepoel

> > 4 July 2024

4 0 8

Two classical results

Let ${\mathcal F}$ be a collection of n convex bodies in \mathbb{R}^d .

Every $d + 1$ of them share a common point

all of them share a common point.

⇒

 Ω

Two classical results

Helly's theorem (1921)

Let ${\mathcal F}$ be a collection of n convex bodies in \mathbb{R}^d .

Every $d + 1$ of them share a common point

all of them share a common point.

Menger's embedding theorem (1928)

Let M be a metric space on $n > d + 4$ points.

Every $(d + 2)$ -element subset is embeddable into \mathbb{R}^d d ⇒ the whole M is embeddable into \mathbb{R}^d .

⇒

 Ω

Two classical results

Helly's theorem (1921)

Let ${\mathcal F}$ be a collection of n convex bodies in \mathbb{R}^d .

Every $d + 1$ of them share a common point

all of them share a common point.

Menger's embedding theorem (1928)

Let M be a metric space on $n > d + 4$ points.

Every $(d + 2)$ -element subset is embeddable into \mathbb{R}^d d ⇒ the whole M is embeddable into \mathbb{R}^d .

⇒

Both $d + 2$ and $d + 4$ are tight.

つひひ

Fractional Helly theorem (Katchalski, Liu '1979)

Let ${\mathcal F}$ be a collection of n convex bodies in \mathbb{R}^d .

 α -fraction of $(d + 1)$ -tuples share a common point ⇒ some βn bodies share a common point. Moreover, $\beta=\beta_d(\alpha)=1-(1-\alpha)^{1/(d+1)}$ (Kalai '1984).

The ℓ_{∞} -distance between (x_1, y_1) and (x_2, y_2) is defined by max $(|x_1 - x_2|, |y_1 - y_2|)$.

Fractional Helly theorem (Katchalski, Liu '1979)

Let ${\mathcal F}$ be a collection of n convex bodies in \mathbb{R}^d .

 α -fraction of $(d + 1)$ -tuples share a common point

some βn bodies share a common point.

Moreover,
$$
\beta = \beta_d(\alpha) = 1 - (1 - \alpha)^{1/(d+1)}
$$
 (Kalai '1984).

Fractional Menger theorem?

The ℓ_{∞} -distance between (x_1, y_1) and (x_2, y_2) is defined by max $(|x_1 - x_2|, |y_1 - y_2|)$.

⇒

Fractional Helly theorem (Katchalski, Liu '1979)

Let ${\mathcal F}$ be a collection of n convex bodies in \mathbb{R}^d .

 α -fraction of $(d + 1)$ -tuples share a common point ⇒

some βn bodies share a common point.

Moreover,
$$
\beta = \beta_d(\alpha) = 1 - (1 - \alpha)^{1/(d+1)}
$$
 (Kalai '1984).

Fractional Menger theorem?

No: $\{m, 2m, \ldots, m^2\} \times \{1, 2, \ldots, m\} \subset \mathbb{R}^2$ equipped with the ℓ_{∞} -metric * .

- Almost all triples are embeddable into \mathbb{R} ,
- No $(m+1)$ -subset is embeddable into $\mathbb R$.

The ℓ_{∞} -distance between (x_1, y_1) and (x_2, y_2) is defined by max $(|x_1 - x_2|, |y_1 - y_2|)$.

Helly (p, q) -theorem (Alon, Kleitman '1992)

Let ${\mathcal F}$ be a collection of n convex bodies in \mathbb{R}^d , $p\geq q\geq d+1.$

among every p of the bodies some q share a common point

 \Rightarrow some $c(p, q)$ points pierce F.

Helly (p, q) -theorem (Alon, Kleitman '1992)

Let ${\mathcal F}$ be a collection of n convex bodies in \mathbb{R}^d , $p\geq q\geq d+1.$

among every p of the bodies some q share a common point

 \Rightarrow some $c(p, q)$ points pierce F.

Menger (p, q) -theorem?

For which $p > q > 3$, for every metric space M on n points

among every p points some q are embeddable into $\mathbb R$ ⇒ M is partitioned into $c(p, q)$ embeddable into R subsets ?

つひひ

Negative direction

Menger $(k^2+1,k+1)$ -theorem does not hold

 \leftarrow \leftarrow

Negative direction

Menger $(k^2+1,k+1)$ -theorem does not hold

4 D F

Negative direction

Menger $(k^2+1,k+1)$ -theorem does not hold

4 D F

Negative direction

Menger $(k^2+1,k+1)$ -theorem does not hold

4 D F

Negative direction

Menger $(k^2+1,k+1)$ -theorem does not hold

Positive direction

Menger (p, q) -theorem holds for:

•
$$
(3k, 2k + 1)
$$

イロト

Negative direction

Menger $(k^2+1,k+1)$ -theorem does not hold

Positive direction

Menger (p, q) -theorem holds for:

• $(3k, 2k + 1)$ with 1 line and $k - 1$ singletons;

4 0 8

Negative direction

Menger $(k^2+1,k+1)$ -theorem does not hold

Positive direction

Menger (p, q) -theorem holds for:

- \bullet (3k, 2k + 1) with 1 line and k 1 singletons;
- \bullet (8k, 5k + 1)

4 0 8

Negative direction

Menger $(k^2+1,k+1)$ -theorem does not hold

Positive direction

Menger (p, q) -theorem holds for:

• $(3k, 2k + 1)$ with 1 line and $k - 1$ singletons;

 \bullet (8k, 5k + 1)

Helly: at least one $(d + 1)$ -tuple has not been checked \Rightarrow there might be no common point.

 Ω

Menger: $\mathcal{S} \subset \binom{[n]}{d+1}$ $\begin{bmatrix} [n] \ d+2 \end{bmatrix}$ tests the embeddability if for every metric on $[n]$, every $S \in \mathcal{S}$ is embeddable into \mathbb{R}^d \Rightarrow the whole space is embeddable into \mathbb{R}^d .

Let $f_d(n)$ be the minimum size of such S.

つへへ

Menger: $\mathcal{S} \subset \binom{[n]}{d+1}$ $\begin{bmatrix} [n] \ d+2 \end{bmatrix}$ tests the embeddability if for every metric on $[n]$, every $S \in \mathcal{S}$ is embeddable into \mathbb{R}^d \Rightarrow is embeddable into \mathbb{R}^d . the whole space

Let $f_d(n)$ be the minimum size of such S.

Theorem (Chvátal, de Rancourt, Gamboa Quintero, Kantor, Szabó) \bigcap 2 $\bigg) \leq f_1(n) \leq \Big(2+\frac{1}{3}\Big)$ \bigwedge^n 2 .

Menger: $\mathcal{S} \subset \binom{[n]}{d+1}$ $\begin{bmatrix} [n] \ d+2 \end{bmatrix}$ tests the embeddability if for every metric on $[n]$, every $S \in \mathcal{S}$ is embeddable into \mathbb{R}^d \Rightarrow is embeddable into \mathbb{R}^d . the whole space

Let $f_d(n)$ be the minimum size of such S.

Theorem (Chvátal, de Rancourt, Gamboa Quintero, Kantor, Szabó) \bigcap 2 $\bigg) \leq f_1(n) \leq \Big(2+\frac{1}{3}\Big)$ \bigwedge^n 2 .

Theorem

$$
\frac{3}{d+2}\binom{n}{d+1}\leq f_d(n)\leq \Big(2+\frac{1}{d+2}\Big)\binom{n}{d+1}.
$$

Menger's embedding theorem (1928)

Let M be a metric space on $n > d + 4$ points.

Every $(d + 2)$ -element subset is embeddable into \mathbb{R}^d \Rightarrow the whole $\mathcal M$ is embeddable into \mathbb{R}^d .

Notation: $M(\mathbb{R}^d, \ell_2) = d + 2$.

For which other norms N on \mathbb{R}^d , we have $M(\mathbb{R}^d,N)<\infty$?

Menger's embedding theorem (1928)

Let M be a metric space on $n > d + 4$ points.

Every $(d + 2)$ -element subset is embeddable into \mathbb{R}^d \Rightarrow the whole $\mathcal M$ is embeddable into \mathbb{R}^d .

Notation:
$$
M(\mathbb{R}^d, \ell_2) = d + 2
$$
.

For which other norms N on \mathbb{R}^d , we have $M(\mathbb{R}^d,N)<\infty$?

 $M(\mathbb{R}^2,\ell_{\infty})\leq 6$ (Bandelt, Chepoi '1996)

Menger's embedding theorem (1928)

Let M be a metric space on $n > d + 4$ points.

Every $(d + 2)$ -element subset is embeddable into \mathbb{R}^d \Rightarrow the whole $\mathcal M$ is embeddable into \mathbb{R}^d .

Notation:
$$
M(\mathbb{R}^d, \ell_2) = d + 2
$$
.

For which other norms N on \mathbb{R}^d , we have $M(\mathbb{R}^d,N)<\infty$?

- $M(\mathbb{R}^2,\ell_{\infty})\leq 6$ (Bandelt, Chepoi '1996)
- $M(\mathbb{R}^3, \ell_\infty) = \infty$ (Edmonds '2008)

Helly's theorem

- For all $\alpha < 1$, fractional theorem holds and $\beta_{\boldsymbol{d}}(\alpha)=1-(1-\alpha)^{1/(\boldsymbol{d}+1)}$
- For all $p > q > 3$, (p, q) -theorem holds.
- Testing with fewer queries is not possible.

Menger's embedding theorem

- For all $\alpha < 1$, fractional theorem does not hold.
- If $p < \frac{8}{5}$ $rac{8}{5}q,$ then (p, q) -theorem holds; If $p > q^2$, then (p, q) -theorem does not hold.

$$
\bullet \ \binom{n}{2} \leq f_1(n) \leq \left(2 + \frac{1}{3}\right) \binom{n}{2}
$$

Thank you for your attention!