Variations of the Menger Embedding Theorem

Arsenii Sagdeev

Alfréd Rényi Institute of Mathematics, Budapest, Hungary sagdeevarsenii@gmail.com

joint work with Konrad Swanepoel

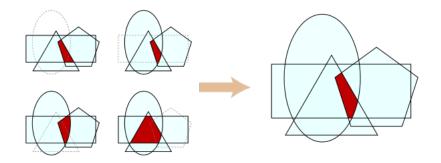
4 July 2024

Two classical results

Helly's theorem (1921)

Let \mathcal{F} be a collection of *n* convex bodies in \mathbb{R}^d .

Every d + 1 of them share a common point all of them share a common point.



 \Rightarrow

Two classical results

Helly's theorem (1921)

Let \mathcal{F} be a collection of *n* convex bodies in \mathbb{R}^d .

Every d + 1 of them share a common point all of them share a common point.

Menger's embedding theorem (1928)

Let \mathcal{M} be a metric space on $n \geq d + 4$ points.

Every (d+2)-element subset the whole \mathcal{M} is embeddable into \mathbb{R}^d \Rightarrow is embeddable into \mathbb{R}^d .

 \Rightarrow

Two classical results

Helly's theorem (1921)

Let \mathcal{F} be a collection of *n* convex bodies in \mathbb{R}^d .

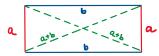
Every d + 1 of them share a common point all of them share a common point.

Menger's embedding theorem (1928)

Let \mathcal{M} be a metric space on $n \geq d + 4$ points.

 \Rightarrow

Both d + 2 and d + 4 are tight.



Fractional Helly theorem (Katchalski, Liu '1979)

Let \mathcal{F} be a collection of *n* convex bodies in \mathbb{R}^d .

 $\begin{array}{c} \alpha \text{-fraction of } (d+1)\text{-tuples} \\ \text{share a common point} \end{array} \Rightarrow \begin{array}{c} \text{some } \beta n \text{ bodies} \\ \text{share a common point.} \end{array}$

Moreover, $\beta = \beta_d(\alpha) = 1 - (1 - \alpha)^{1/(d+1)}$ (Kalai '1984).

The ℓ_{∞} -distance between (x_1, y_1) and (x_2, y_2) is defined by max $(|x_1 - x_2|, |y_1 - y_2|)$.

Fractional Helly theorem (Katchalski, Liu '1979)

Let \mathcal{F} be a collection of *n* convex bodies in \mathbb{R}^d .

 $\begin{array}{c} \alpha \text{-fraction of } (d+1)\text{-tuples} \\ \text{share a common point} \end{array} \Rightarrow \begin{array}{c} \text{some } \beta n \text{ bodies} \\ \text{share a common point.} \end{array}$

Moreover,
$$\beta = \beta_d(\alpha) = 1 - (1 - \alpha)^{1/(d+1)}$$
 (Kalai '1984).

Fractional Menger theorem?

The ℓ_{∞} -distance between (x_1, y_1) and (x_2, y_2) is defined by max $(|x_1 - x_2|, |y_1 - y_2|)$.

Fractional Helly theorem (Katchalski, Liu '1979)

Let \mathcal{F} be a collection of *n* convex bodies in \mathbb{R}^d .

 $\begin{array}{c} \alpha \text{-fraction of } (d+1)\text{-tuples} \\ \text{share a common point} \end{array} \Rightarrow \begin{array}{c} \text{some } \beta n \text{ bodies} \\ \text{share a common point.} \end{array}$

Moreover,
$$\beta = \beta_d(\alpha) = 1 - (1 - \alpha)^{1/(d+1)}$$
 (Kalai '1984).

Fractional Menger theorem?

No: $\{m, 2m, \ldots, m^2\} \times \{1, 2, \ldots, m\} \subset \mathbb{R}^2$ equipped with the ℓ_{∞} -metric^{*}.

- \bullet Almost all triples are embeddable into $\mathbb R,$
- No (m+1)-subset is embeddable into \mathbb{R} .

The ℓ_{∞} -distance between (x_1, y_1) and (x_2, y_2) is defined by max $(|x_1 - x_2|, |y_1 - y_2|)$.

Helly (p, q)-theorem (Alon, Kleitman '1992)

Let \mathcal{F} be a collection of *n* convex bodies in \mathbb{R}^d , $p \ge q \ge d + 1$.

among every p of the bodies some q share a common point

 \Rightarrow some c(p,q) points pierce \mathcal{F} .

Helly (p, q)-theorem (Alon, Kleitman '1992)

Let \mathcal{F} be a collection of *n* convex bodies in \mathbb{R}^d , $p \ge q \ge d + 1$.

among every p of the bodies some q share a common point

 \Rightarrow some c(p,q) points pierce \mathcal{F} .

Menger (p, q)-theorem?

For which $p \ge q \ge 3$, for every metric space \mathcal{M} on n points

among every p points some q are embeddable into \mathbb{R} \Rightarrow \mathcal{M} is partitioned into c(p,q) ? embeddable into \mathbb{R} subsets

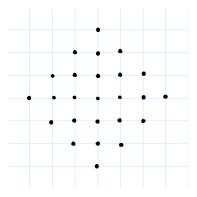
Negative direction

Menger $(k^2 + 1, k + 1)$ -theorem does not hold

<ロ> <四> <四> <四> <四</td>

Negative direction

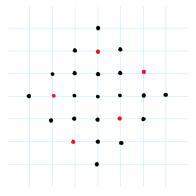
Menger $(k^2 + 1, k + 1)$ -theorem does not hold



→ ∃ ▶

Negative direction

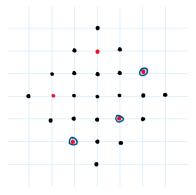
Menger $(k^2 + 1, k + 1)$ -theorem does not hold



→ ∃ ▶

Negative direction

Menger $(k^2 + 1, k + 1)$ -theorem does not hold



★ ∃ ▶

Negative direction

Menger $(k^2 + 1, k + 1)$ -theorem does not hold

Positive direction

Menger (p, q)-theorem holds for:

•
$$(3k, 2k+1)$$

< ≥ > <

Negative direction

Menger $(k^2 + 1, k + 1)$ -theorem does not hold

Positive direction

Menger (p, q)-theorem holds for:

• (3k, 2k + 1) with 1 line and k - 1 singletons;

Negative direction

Menger $(k^2 + 1, k + 1)$ -theorem does not hold

Positive direction

Menger (p, q)-theorem holds for:

- (3k, 2k + 1) with 1 line and k 1 singletons;
- (8k, 5k + 1)

▲ 恵 ▶ ▲

Negative direction

Menger $(k^2 + 1, k + 1)$ -theorem does not hold

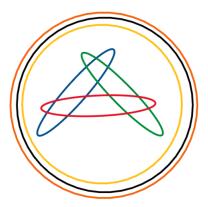
Positive direction

Menger (p, q)-theorem holds for:

• (3k, 2k + 1) with 1 line and k - 1 singletons;

•
$$(8k, 5k+1)$$

Helly: at least one (d + 1)-tuple has not been checked \Rightarrow there might be no common point.



 $\begin{array}{lll} \text{Menger: } \mathcal{S} \subset {[n] \choose d+2} \text{ tests the embeddability if for every metric on } [n], \\ & \text{every } \mathcal{S} \in \mathcal{S} \\ & \text{is embeddable into } \mathbb{R}^d \end{array} \Rightarrow \begin{array}{l} \text{the whole space} \\ & \text{is embeddable into } \mathbb{R}^d. \end{array}$

Let $f_d(n)$ be the minimum size of such S.

 $\begin{array}{ll} \text{Menger: } \mathcal{S} \subset {[n] \choose d+2} \text{ tests the embeddability if for every metric on } [n],\\ \text{every } \mathcal{S} \in \mathcal{S} & \text{the whole space}\\ \text{is embeddable into } \mathbb{R}^d & \Rightarrow & \text{is embeddable into } \mathbb{R}^d. \end{array}$

Let $f_d(n)$ be the minimum size of such S.

Theorem (Chvátal, de Rancourt, Gamboa Quintero, Kantor, Szabó) $\binom{n}{2} \leq f_1(n) \leq \left(2 + \frac{1}{3}\right) \binom{n}{2}.$

 $\begin{array}{ll} \text{Menger: } \mathcal{S} \subset {[n] \choose d+2} \text{ tests the embeddability if for every metric on } [n],\\ \text{every } \mathcal{S} \in \mathcal{S} & \text{the whole space}\\ \text{is embeddable into } \mathbb{R}^d & \Rightarrow & \text{is embeddable into } \mathbb{R}^d. \end{array}$

Let $f_d(n)$ be the minimum size of such S.

Theorem (Chvátal, de Rancourt, Gamboa Quintero, Kantor, Szabó) $\binom{n}{2} \leq f_1(n) \leq \left(2 + \frac{1}{3}\right) \binom{n}{2}.$

Theorem

$$\frac{3}{d+2}\binom{n}{d+1} \leq f_d(n) \leq \left(2 + \frac{1}{d+2}\right)\binom{n}{d+1}.$$

Open Problem

Menger's embedding theorem (1928)

Let \mathcal{M} be a metric space on $n \geq d + 4$ points.

Every (d+2)-element subset the whole \mathcal{M} is embeddable into \mathbb{R}^d \Rightarrow is embeddable into \mathbb{R}^d .

Notation:
$$M(\mathbb{R}^d, \ell_2) = d + 2$$
.

For which other norms N on \mathbb{R}^d , we have $M(\mathbb{R}^d, N) < \infty$?

Open Problem

Menger's embedding theorem (1928)

Let \mathcal{M} be a metric space on $n \geq d + 4$ points.

Notation:
$$M(\mathbb{R}^d, \ell_2) = d + 2$$
.

For which other norms N on \mathbb{R}^d , we have $M(\mathbb{R}^d, N) < \infty$?

• $M(\mathbb{R}^2,\ell_\infty)\leq 6$ (Bandelt, Chepoi '1996)

Open Problem

Menger's embedding theorem (1928)

Let \mathcal{M} be a metric space on $n \geq d + 4$ points.

Notation:
$$M(\mathbb{R}^d, \ell_2) = d + 2$$
.

For which other norms N on \mathbb{R}^d , we have $M(\mathbb{R}^d, N) < \infty$?

- $M(\mathbb{R}^2, \ell_\infty) \leq 6$ (Bandelt, Chepoi '1996)
- $M(\mathbb{R}^3, \ell_\infty) = \infty$ (Edmonds '2008)

Helly's theorem

- For all $\alpha < 1$, fractional theorem holds and $\beta_d(\alpha) = 1 - (1 - \alpha)^{1/(d+1)}$
- For all p ≥ q ≥ 3, (p,q)-theorem holds.
- Testing with fewer queries is not possible.

Menger's embedding theorem

- For all $\alpha < 1$, fractional theorem does not hold.
- If $p < \frac{8}{5}q$, then (p, q)-theorem holds; If $p > q^2$, then (p, q)-theorem does not hold.

•
$$\binom{n}{2} \leq f_1(n) \leq \left(2 + \frac{1}{3}\right)\binom{n}{2}$$

Thank you for your attention!