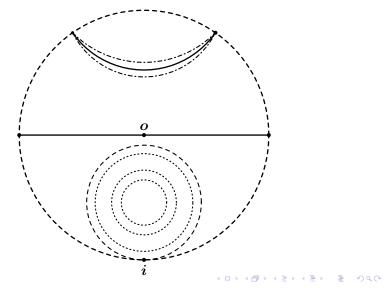
Some inequalities on reduced convex bodies in the hyperbolic space

Ádám Sagmeister

<□> <□> <□> <□> <=> <=> <=> <=> <<

The Poincaré disk



Width in the hyperbolic space

- ♦ Let $K \subset \mathbb{H}^n$ a convex body and H a supporting hyperplane
- The hyperplane H' is ultraparallel to H if they are parallel with no common ideal point
- H and H' have a unique line which is orthogonal to both
- The width of K with respect to H is

$$w\left(K,H
ight)=d\left(H,H'
ight)$$

where H' is an ultraparallel hyperplane at the largest distance to H

For any supporting hyperplane H, w (K, H) equals the distance of H and the parallel supporting hypersphare to H

Reduced convex bodies

- $ightarrow w\left(K
 ight)$ denotes the minimal width of K
- K is reduced if for all $L \subsetneq K$, $w\left(L\right) < w\left(K\right)$
- * $L \subseteq K$ is a *reduction* of K if it is reduced of the same width
- Every convex body has a reduction
- ✤ In \mathbb{R}^n , the only centrally symmetric reduced bodies are balls and there is no known reduced polytopes in \mathbb{R}^n for $n \ge 4$
- ✤ In ℝ² and in S² polygons are reduced if and only if for every vertex v_i their projections t_i are interior points of the opposite side and d (v_i, t_i) = w

・ロト ・ 日 ・ モ ト ・ モ ・ つへの

Pál's inequality

Theorem (Pál 1921, Bezdek-Blekherman 1999)

Among convex bodies of thickness w > 0 in \mathbb{R}^2 and in \mathbb{S}^2 if $w \leq \frac{\pi}{2}$, the regular triangle of height w is the unique body whose area is the smallest.

・ロト ・ 日 ・ モ ト ・ モ ・ つへの

Pál's inequality

Theorem (Pál 1921, Bezdek-Blekherman 1999)

Among convex bodies of thickness w > 0 in \mathbb{R}^2 and in \mathbb{S}^2 if $w \leq \frac{\pi}{2}$, the regular triangle of height w is the unique body whose area is the smallest.

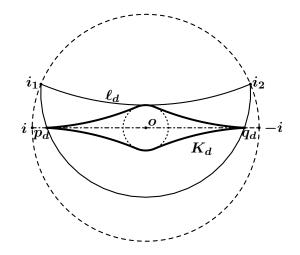
Theorem (Böröczky-Freyer-S. 2024+)

Let w > 0 be a fixed positive number. Then,

 $\inf\left\{ \mathrm{vol}_{n}\left(K
ight) : K\subset\mathbb{H}^{n} ext{ convex body, } w\left(K
ight) \geq w
ight\} =0.$

Ádám Sagmeister

There is no solution in \mathbb{H}^n



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

Blaschke-Lebesgue-Leichtweiss Theorem

Theorem (Lebesgue 1914, Blaschke 1915)

Among convex bodies of constant width w > 0 in \mathbb{R}^2 , the Reuleaux triangle of diameter w is the unique one with minimal area.

Theorem (Araújo 1997, Leichtweiss 2005, Bezdek 2021, Böröczky-S. 2022)

For any convex body K in \mathbb{S}^2 or in \mathbb{H}^2 of constant width w > 0 (also $w < \frac{\pi}{2}$ in the spherical case), the area of K is at least the area of a Reuleaux triangle of diameter w.

Stability of the BLL-inequality

Theorem (Böröczky-S. 2022)

If $K \subset \mathcal{M}^2$ is a body of constant width w > 0 (also $w < \frac{\pi}{2}$ in the spherical case), $\varepsilon \ge 0$ and

 $\operatorname{area}(K) \leq (1 + \varepsilon) \operatorname{area}(U_w),$

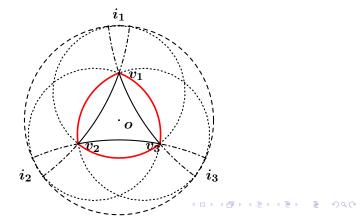
then there exists a Reuleaux triangle $U \subset \mathcal{M}^2$ of width w such that $\delta_H(K, U) \leq \theta \varepsilon$ where $\theta > 0$ is an explicitly calculable constant depending on w and \mathcal{M}^2 .

・ロト (局) (目) (日) (日) (日)

The h-convex isominwidth problem

Theorem (Böröczky, Freyer, S. 2024+)

Among h-convex bodies of fixed width, the horocyclic Reuleaux triangle has the smallest area.



Hyperbolic reduced polytopes

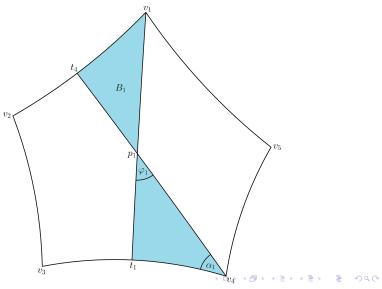
- In \mathbb{H}^2 , polygons s. t. for every vertex v_i their projections t_i are interior points of the opposite side and $d(v_i, t_i) = w$ are reduced
- These are called ordinary reduced polygons
- Not all reduced polygons are ordinary (e.g. "long" rhombi)
- There are centrally symmetric reduced crosspolytopes in Hⁿ

A few of Lassak's questions

- Q1 Do regular (2k + 1)-gons minimize/maximize the area?
- Q2 Do regular (2k + 1)-gons minimize/maximize the perimeter?
- Q3 What is the smallest upperbound for the circumradii?

・ロト (局) (目) (日) (日) (日)

The key idea to tackle Q1 and Q2



Some remarks on the butterflies

- The sum of the angles φ_i is π
- The two "wings" of the butterflies are congruent for each B_i
- The butterflies cover the polygon
- \clubsuit One can measure the area and the perimeter with functions of φ_i
- We study the convexity of these functions

・ロト (局) (目) (日) (日) (日)

About the area

$$f_w(x) = \operatorname{arsinh} \frac{x\sqrt{1-\tanh^2 w}}{\tanh w - x},$$

$$g_w(x) = \frac{1+\cos x - \sqrt{(1+\cos x)^2 - 4\tanh^2 w \cos x}}{2\tanh w}$$

Theorem (S. 2024+)

area
$$(P) = (n-2) \pi - 2 \sum_{i=1}^{n} f_w \left(g_w \left(\varphi_i\right)\right)$$

Theorem (S. 2024+)

The regular n-gon has the greatest area among ordinary reduced n-gons.

Ádám Sagmeister

・ロト (局) (目) (日) (日) (日)

Ordinary reduced polygons

About the perimeter

Theorem (S. 2024+)

$$ext{perim}\left(P
ight)=2\sum_{i=1}^{n}p_{w}\left(arphi_{i}
ight)$$

Theorem (S. 2024+)

The regular n-gon has the smallest perimeter among ordinary reduced n-gons.

Ádám Sagmeister

The diameter of ordinary reduced polygons

Theorem (Lassak 2024+)

$$\operatorname{diam}\left(P
ight)<\operatorname{arcosh}\left(\cosh w\sqrt{1+rac{\sqrt{2}}{2}}\sinh w
ight)$$

Ádám Sagmeister

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The diameter of ordinary reduced polygons

Theorem (Lassak 2024+)

$${
m diam}\left(P
ight)<{
m arcosh}\left(\cosh w\sqrt{1+rac{\sqrt{2}}{2}}\sinh w
ight)$$

Theorem (S. 2024+)

$$ext{diam}\left(P
ight)\leq2 ext{arcosh}\left(rac{\cosh w+\sqrt{\cosh^2 w+8}}{4}
ight)$$

with equality if and only if *P* is a regular triangle.

Ádám Sagmeister

・ロト ・ 日 ・ モ ト ・ モ ・ つへの

Ordinary reduced polygons

About the circumradius and inradius

Theorem (S. 2024+)

$$R\left(P
ight)\leq ext{arsinh}\left(rac{2}{\sqrt{3}}\sqrt{\left(rac{\cosh w+\sqrt{\cosh^2 w+8}}{4}
ight)^2-1}
ight)$$

Theorem (S. 2024+)

There is a boundary point $z \in \partial P$ s. t. $P \subset B(z, w)$.

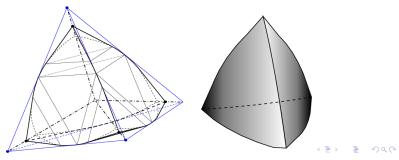
▲□▶▲□▶▲≡▶▲≡▶ ≡ のQの

Pál's problem in ℝ³

Theorem (Campi-Colesanti-Gronchi 1996)

Among rotationally symmetric bodies of thickness w in \mathbb{R}^3 , the rotation of the regular triangle of height w has the smallest volume.

 $\$ It is conjectured that among convex bodies in \mathbb{R}^3 the Heil body has the smallest volume



The Blaschke-Lebesgue problem in \mathbb{R}^3

Theorem (Campi-Colesanti-Gronchi 1996)

Among rotationally symmetric bodies of constant width in \mathbb{R}^3 , the rotation of the Reuleaux triangle has the smallest volume.

It is conjectured that the Meissner body has the smallest volume among bodies of constant width in \mathbb{R}^3 .

