The Illumination of Symmetric Cap Bodies

Presented by Cameron Strachan

Joint work with Károly Bezdek and Illya Ivanov

Introduction to Illumination

- A convex body $K \subseteq \mathbb{R}^d$, is a convex, compact set, with non-empty interior.
- $b \in bd(K)$ is **illuminated by** $s \in \mathbb{R}^d \setminus K$, if the ray emanating from s going through b intersects int(K) after it passes b.

A set $\{s_1, s_2, \dots, s_n\} \subseteq \mathbb{R}^d \setminus K$ illuminates a convex body if every boundary point of K is illuminated by at least one element in $\{s_1, s_2, \dots, s_n\}$.

Equivalent Formulations of Illumination

• A direction $u \in S^{d-1}$ illuminates $b \in bd(K)$, if the ray emanating from b in the direction u intersects int(K).

• The **illumination number** of *K*, denoted *I*(*K*), equals the minimum number of directions/light sources needed to illuminate *K*.

Κ

I(*K*) is also equal to the minimum number of translates of *int*(*K*) required to cover *K*.

The Illumination Conjecture

- **Conjecture:** For any convex body $K \subseteq \mathbb{R}^d$, $I(K) \leq 2^d$. Furthermore, $I(K) = 2^d$ if and only if K is an affine image of the d-cube.
- Proven in \mathbb{R}^2 ([1], [2], [3] and [4]).
- In R³ has been proven for convex bodies with central symmetry [5], symmetry about a plane [6], and polytopes with affine symmetry [7].
- General bounds for \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , and \mathbb{R}^6 , are $I(K) \le 14, 96, 1091$, and 15373 [8] and [9].
- Rogers [10] proved in \mathbb{R}^d that $I(K) \leq O(4^d \sqrt{d} \ln(d))$ and if K is centrally symmetric $I(K) \leq O(2^d d \ln(d))$ [10].

Cap Bodies

• A cap body of a ball $C \subseteq \mathbb{R}^d$, is the convex hull of the Euclidean ball B^d , and a finite set $\{x_1, x_2, ..., x_n\} \subseteq \mathbb{R}^d \setminus B^d$, such that $conv(\{x_i, x_j\}) \cap B^d \neq \emptyset$ for all $i \neq j$.

• Naszódi [11] proved that for any $\varepsilon > 0$ and all sufficiently large d, there exists a centrally symmetric cap body C, within an ε -region of B^d , with an exponential illumination number in terms of d.

Our Result

• We prove that for a centrally symmetric cap body $C \subseteq \mathbb{R}^d$ for $d \ge 3$, $I(C) \le 2 + N_{\mathbb{S}^{d-2}} \left[\frac{\pi}{4}\right].$

Where $N_{\mathbb{S}^{d-1}}[\alpha]$ denotes the minimum number of closed spherical caps with angular radius α required to cover \mathbb{S}^{d-1} .

• Using the known bounds for $N_{\mathbb{S}^{d-2}}\left[\frac{\pi}{4}\right]$, implies $I(C) \leq 6$ for d = 3, $I(C) \leq 12$ for d = 4 using [13], and $I(C) < 2^d$ for $d \geq 20$ [12] (combined with [11]).

How to Illuminate Cap Bodies

Every cap body $C = conv(B^d \cup \{x_1, x_2, ..., x_n\})$ can be uniquely associated with a packing of closed spherical caps $\bigcup_{i \in \{1,...,n\}} C_{\mathbb{S}^{d-1}}[y_i, \alpha_i] \subseteq \mathbb{S}^{d-1}$.

 $-\mathbf{y}_2$

 $-\mathbf{y}_1$

• Lemma: A set of directions $\{u_1, u_2, ..., u_k\} \subseteq \mathbb{S}^{d-1}$ illuminates C if and only if the set of open hemispheres centered at $-u_j$ for $j \in \{1, 2, ..., k\}$ separates the packing of spherical caps and covers \mathbb{S}^{d-1} .

Lemma: A set of directions $\{u_1, u_2, ..., u_k\} \subseteq \mathbb{S}^{d-1}$ illuminates *C* if and only if they positively span \mathbb{R}^d and $\{-u_1, -u_2, ..., -u_k\} \cap C_{\mathbb{S}^{d-1}}\left(y_i, \frac{\pi}{2} - \alpha_i\right) \neq \emptyset, \forall i$.

Lemma

• Let $\bigcup_{i \in \{1,2,\dots,n\}} C_{\mathbb{S}^{d-1}}\left(\pm y_i, \frac{\pi}{2} - \alpha_i\right)$ be the set of open spherical caps associated to a centrally symmetric cap body C. • Lemma: $C_{\mathbb{S}^{d-1}} \left| \pm y_i, \frac{\pi}{2} - \alpha_i \right| \cap C_{\mathbb{S}^{d-1}} \left| \pm y_j, \frac{\pi}{2} - \alpha_j \right| \neq \emptyset.$ Proof: It suffices to show $C_{\mathbb{S}^{d-1}}\left[y_i, \frac{\pi}{2} - \alpha_i\right] \cap C_{\mathbb{S}^{d-1}}\left[-y_j, \frac{\pi}{2} - \alpha_j\right] \neq \emptyset$. Let H be the hyperplane passing through the origin separating $C_{S^{d-1}}[y_i, \alpha_i]$ and $C_{\mathbb{S}^{d-1}}[y_j, \alpha_j]$ with a normal vector n_{ij} . Then $\angle (n_{ij}, y_i) \leq \frac{\pi}{2} - \alpha_i$ and $\angle (-n_{ij}, y_j) \leq \frac{\pi}{2} - \alpha_j$. The latter implies $\angle (n_{ij}, -y_j) \leq \frac{\pi}{2} - \alpha_j$ so

$$n_{ij} \in C_{\mathbb{S}^{d-1}}\left[y_i, \frac{\pi}{2} - \alpha_i\right] \cap C_{\mathbb{S}^{d-1}}\left[-y_j, \frac{\pi}{2} - \alpha_j\right].$$

Another Lemma

- Need to find a set of size $2 + N_{\mathbb{S}^{d-2}}\left[\frac{\pi}{4}\right]$ that positively spans \mathbb{R}^d , and pierces the set of open spherical caps $\bigcup_{i \in \{1,2,\dots,n\}} C_{\mathbb{S}^{d-1}}(\pm y_i, \beta_i)$. Here $\beta_i = \frac{\pi}{2} \alpha_i$.
- Lemma: Suppose $0 < \beta_1 \le \beta_2 \le \dots \le \beta_n < \frac{\pi}{2}$, orient $\pm y_1$ at the north and south pole and let \mathbb{S}^{d-2} be the equator, then for $i \in \{2,3,\dots,n\}$:

 $\mathbb{S}^{d-2} \cap C_{\mathbb{S}^{d-1}}[\pm y_i, \beta_i]$ is a closed (d-2)-spherical cap with a radius of at least $\frac{\pi}{4}$.

Proof of Theorem

- Now cover \mathbb{S}^{d-2} with a minimal number of closed spherical caps having radii $\frac{\pi}{4}$, and take $\{u_1, u_2, \dots, u_{N_{\mathbb{S}^{d-2}}\left[\frac{\pi}{4}\right]}\}$ as the set of center points.
- No point in \mathbb{S}^{d-2} is at a distance at least $\frac{\pi}{4}$ from this set, which implies $\{u_1, u_2, \dots, u_{N_{\mathbb{S}^{d-2}}\left[\frac{\pi}{4}\right]}\}$ pierces the caps $C_{\mathbb{S}^{d-1}}[\pm y_i, \beta_i]$ for $i \in \{2, 3, \dots, n\}$.
- With a proper chosen isometry of $\{u_1, u_2, \dots, u_{N_{\mathbb{S}^{d-2}}\left[\frac{\pi}{4}\right]}\}$ we can ensure they pierce the open spherical caps.
- Now taking this set along with $\pm y_1$ gives us a set that pierces every cap.
- This set of points positively spans \mathbb{R}^d as no open hemisphere is left unpierced.

References:

- V. Boltyanski, The problem of illuminating the boundary of a convex body, *Izv. Mold. Fil. AN SSSR* 76 (1960), 77–84.
- [2] I. T. Gohberg and A. S. Markus, A certain problem about covering of convex sets with homothetic ones, *Izvestiya Moldavskogo Filiala Akademii Nauk SSSR* (in Russian) 10/76 (1960), 87–90.
- [3] H. Hadwiger, Ungelöste Probleme Nr. 38, *Elem. der Math.* **15** (1960), 130–131.
- [4] F. W. Levi, Überdeckung eines Eibereiches durch Parallelverschiebungen seines offenen Kerns, Arch. Math. 6/5 (1955), 369–370.
- [5] M. Lassak. Solution of Hadwiger's covering problem for centrally symmetric convex bodies in \mathbb{E}^3 . Journal of the London Mathematical Society, s2-30(3):501–511, 1984.
- [6] B. Dekster. Each convex body in E³ symmetric about a plane can be illuminated by 8 directions. Journal of Geometry, 69(1-2):37–50, 2000.
- [7] K. Bezdek. The problem of illumination of the boundary of a convex body by affine subspaces. Mathematika, 38(2):362–375, 1991.
- [8] A. Prymak: A New Bound for Hadwiger's Covering Problem in \mathbb{E}^3 , SIAM Journal on Discrete Mathematics 37 (2023), no. 1, 17-24.
- [9] A. Prymak, and V. Shepelska, On the Hadwiger covering problem in low dimensions, J. Geom. 111/3 (2020), Paper No.42, 11 pp.
- [10]C. A. Rogers, A note on coverings, *Mathematika* 4 (1957), 1–6.
- **11** M. Naszódi. A spiky ball. *Mathematika*, 62(2):630–636, 2016.

[12] I. Dumer, Covering spheres with spheres, *Discrete Comput. Geom.* 38/4 (2007), 665–679.

[13] T. Tarnai and Zs. Gáspár, Covering a sphere by equal circles, and the rigidity of its graph, *Math. Proc. Cambridge Philos. Soc.* **110/1** (1991), 71–89.