The Illumination of Symmetric Cap Bodies

Presented by Cameron Strachan

Joint work with Károly Bezdek and Illya Ivanov

Introduction to Illumination

- A convex body $K \subseteq \mathbb{R}^d$, is a convex, compact set, with non-empty interior.
- $b \in bd(K)$ is **illuminated by** $s \in \mathbb{R}^d \setminus K$, if the ray emanating from s going through *b* intersects $int(K)$ after it passes *b*.

A set $\{s_1, s_2, ..., s_n\} \subseteq \mathbb{R}^d \setminus K$ **illuminates a convex body** if every boundary point of K is illuminated by at least one element in $\{s_1, s_2, ..., s_n\}$.

Equivalent Formulations of Illumination

• A direction $u \in \mathbb{S}^{d-1}$ illuminates $b \in bd(K)$, if the ray emanating from b in the direction u intersects $int(K)$.

• The **illumination number** of K, denoted $I(K)$, equals the minimum number of directions/light sources needed to illuminate K .

K

 $I(K)$ is also equal to the minimum number of translates of $int(K)$ required to cover K .

The Illumination Conjecture

- **Conjecture:** For any convex body $K \subseteq \mathbb{R}^d$, $I(K) \leq 2^d$. Furthermore, $I(K) = 2^d$ if and only if K is an affine image of the d -cube.
- Proven in \mathbb{R}^2 ([1], [2], [3] and [4]).
- In \mathbb{R}^3 has been proven for convex bodies with central symmetry [5], symmetry about a plane $[6]$, and polytopes with affine symmetry $[7]$.
- General bounds for \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , and \mathbb{R}^6 , are $I(K) \leq 14$, 96, 1091, and 15373 $[8]$ and $[9]$.
- Rogers [10] proved in \mathbb{R}^d that $I(K) \leq O(4^d \sqrt{d} \ln(d))$ and if K is centrally symmetric $I(K) \leq O\big(2^d d \ln(d)\big)$ $[10].$

Cap Bodies

• A cap body of a ball $C \subseteq \mathbb{R}^d$, is the convex hull of the Euclidean ball B^d , and a finite set $\{x_1, x_2, ..., x_n\} \subseteq \mathbb{R}^d \backslash B^d$, such that $conv(\{x_i, x_j\}) \cap B^d \neq \emptyset$ for all $i \neq j$.

Naszódi [11] proved that for any $\varepsilon > 0$ and all sufficiently large d, there exists a centrally symmetric cap body C , within an ε -region of B^d , with an exponential illumination number in terms of d .

Our Result

• We prove that for a centrally symmetric cap body $C \subseteq \mathbb{R}^d$ for $d \geq 3$, $I(C) \leq 2 + N_{\mathbb{S}^{d-2}}$ π 4 .

Where $N_{\mathbb{S}^{d-1}}[\alpha]$ denotes the minimum number of closed spherical caps with angular radius α required to cover $\mathbb{S}^{d-1}.$

• Using the known bounds for $N_{\mathbb{S}^{d-2}}$ π 4 , implies $I(C) \leq 6$ for $d = 3$, $I(C) \leq 12$ for $d = 4$ using [13], and $I(C) < 2^d$ for $d \geq 20$ [12] (combined with [11]).

How to Illuminate Cap Bodies

• Every cap body $C = conv(B^d \cup \{x_1, x_2, ..., x_n\})$ can be uniquely associated with a packing of closed spherical caps $\bigcup_{i \in \{1,\ldots,n\}} C_{\mathbb{S}^{d-1}}[y_i, \alpha_i] \subseteq \mathbb{S}^{d-1}$.

 $-y_2$

 $-\mathbf{y}_1$

• Lemma: A set of directions $\{u_1, u_2, ..., u_k\} \subseteq \mathbb{S}^{d-1}$ illuminates C if and only if the set of open hemispheres centered at $-u_j$ for $j \in \{1,2,...\,,k\}$ separates the packing of spherical caps and covers $\mathbb{S}^{d-1}.$

Lemma: A set of directions $\{u_1, u_2, ..., u_k\} \subseteq \mathbb{S}^{d-1}$ illuminates C if and only if they positively span \mathbb{R}^d and $\,\{-u_1, -u_2,$ … , $-u_k\} \cap \mathcal{C}_{\mathbb{S}^{d-1}}\Big(y_i,$ π $\frac{\pi}{2} - \alpha_i$ $\neq \emptyset$, $\forall i$.

Lemma

• Let $\bigcup_{i \in \{1,2,\dots,n\}} C_{\mathbb{S}^{d-1}} \left(\pm y_i \right)$ π $\frac{\pi}{2} - \alpha_i$) be the set of open spherical caps associated to a centrally symmetric cap body C . • Lemma: $C_{\mathbb{S}^{d-1}}\Big[\pm y_i$, π $\frac{\pi}{2} - \alpha_i \bigcap C_{\mathbb{S}^{d-1}} \big[\pm y_j,$ π $\frac{\pi}{2} - \alpha_j \neq \emptyset.$ Proof: It suffices to show $C_{\mathbb{S}^{d-1}}\big|{\cal Y}_l$, π $\frac{\pi}{2} - \alpha_i \bigcap C_{\mathbb{S}^{d-1}} \bigg[-y_j,$ π $\frac{\pi}{2} - \alpha_j \neq \emptyset.$ Let H be the hyperplane passing through the origin separating ${\mathcal C}_{\mathbb S^{d-1}}[y_i, {\mathbf \alpha}_i]$ and ${\mathcal C}_{{\mathbb S}^{d-1}}[y_j, \alpha_j]$ with a normal vector $n_{ij}.$ Then $\angle(n_{ij}, y_i) \leq 1$ π $\frac{\pi}{2} - \alpha_i$ and $\angle(-n_{ij}, y_j) \leq$ π $\frac{\pi}{2} - \alpha_j$. The latter implies $\angle(n_{ij}, -y_j) \leq$ π $\frac{\pi}{2} - \alpha_j$ so π π .

$$
n_{ij} \in C_{\mathbb{S}^{d-1}} \left[y_i, \frac{\pi}{2} - \alpha_i \right] \cap C_{\mathbb{S}^{d-1}} \left[-y_j, \frac{\pi}{2} - \alpha_j \right].
$$

Another Lemma

- Need to find a set of size $2 + N_{\mathbb{S}^{d-2}}$ π 4 that positively spans \mathbb{R}^d , and pierces the set of open spherical caps $\cup_{i \in \{1,2,...,n\}} C_{\mathbb{S}^{d-1}}(\pm y_i, \beta_i$). Here $\beta_i =$ π $\frac{\pi}{2} - \alpha_i$.
- **Lemma**: Suppose $0 < \beta_1 \leq \beta_2 \leq \cdots \leq \beta_n < \frac{\pi}{2}$ $\frac{\pi}{2}$, orient $\pm y_1$ at the north and south pole and let \mathbb{S}^{d-2} be the equator, then for $i \in \{2,3,...\,n\}$:

 $\mathbb{S}^{d-2} \cap C_{\mathbb{S}^{d-1}}[\pm y_i, \beta_i]$ is a closed $(d-2)$ -spherical cap with a radius of at least $\frac{\pi}{4}$ 4 .

Proof of Theorem

- Now cover \mathbb{S}^{d-2} with a minimal number of closed spherical caps having radii π $\frac{\pi}{4}$, and take $\{u_1, u_2, ..., u_4\}$ $N_{\mathbb{S}}d-2$ π 4 } as the set of center points.
- No point in \mathbb{S}^{d-2} is at a distance at least $\frac{\pi}{4}$ 4 from this set, which implies $\{u_{1}, u_{2}, ..., u$ $N_{\mathbb{S}}d-2$ π 4 } pierces the caps $C_{\mathbb{S}^{d-1}}[\pm y_i, \beta_i]$ for $i \in \{2,3,...\,n\}.$
- With a proper chosen isometry of $\{u_1, u_2, ..., u\}$ $N_{\mathbb{S}}d-2$ π 4 } we can ensure they pierce the open spherical caps.
- Now taking this set along with $\pm y_1$ gives us a set that pierces every cap.
- This set of points positively spans \mathbb{R}^d as no open hemisphere is left unpierced.

References:

- V. Boltyanski, The problem of illuminating the boundary of a convex body, Izv. Mold. Fil. AN SSSR [1] 76 (1960), 77-84.
- I. T. Gohberg and A. S. Markus, A certain problem about covering of convex sets with homothetic [2] ones, Izvestiya Moldavskogo Filiala Akademii Nauk SSSR (in Russian) 10/76 (1960), 87-90.
- [3] H. Hadwiger, Ungelöste Probleme Nr. 38, Elem. der Math. 15 (1960), 130–131.
- F. W. Levi, Überdeckung eines Eibereiches durch Parallelverschiebungen seines offenen Kerns, Arch. [4] Math. $6/5$ (1955), 369-370.
- M. Lassak. Solution of Hadwiger's covering problem for centrally symmetric convex bodies in [5] \mathbb{E}^3 . Journal of the London Mathematical Society, s2-30(3):501-511, 1984.
- B. Dekster. Each convex body in \mathbb{E}^3 symmetric about a plane can be illuminated by 8 directions. [6] Journal of Geometry, 69(1-2):37-50, 2000.
- [7] K. Bezdek. The problem of illumination of the boundary of a convex body by affine subspaces. Mathematika, 38(2):362-375, 1991.
- [8] A. Prymak: A New Bound for Hadwiger's Covering Problem in \mathbb{E}^3 , SIAM Journal on Discrete Mathematics 37 (2023), no. 1, 17-24.
- A. Prymak, and V. Shepelska, On the Hadwiger covering problem in low dimensions, J. Geom. [9] 111/3 (2020), Paper No.42, 11 pp.
- **10** C. A. Rogers, A note on coverings, Mathematika 4 (1957), 1–6.
- $\boxed{11}$ M. Naszódi. A spiky ball. *Mathematika*, 62(2):630–636, 2016.
- $\left[\frac{12}{12}\right]$ I. Dumer, Covering spheres with spheres, *Discrete Comput. Geom.* **38/4** (2007), 665–679.
- [13] T. Tarnai and Zs. Gáspár, Covering a sphere by equal circles, and the rigidity of its graph, *Math.*
[13] *Proc. Cambridge Philos. Soc.* 110/1 (1991), 71–89.