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Szemerédi-Trotter theorem (1983)

Let P be a set of m points and L be a set of n lines in R2. Then

I (P, L) = O(m2/3n2/3 +m + n).



Lemma

Let P be a set of m points and L be a set of n lines in F2, m ≥ n.
Then

I (P, L) = O(m1/2n +m).

Upper bound: Point-line incidence graphs are K2,2-free +
Kővári-Sós-Turán theorem

Lower bound: choose p prime p ≈
√
m

P = F2
p and L arbitrary set of n lines.
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High dimension

There is a set of m points and a set of n planes in R3 with mn
incidences.

Problem (Chazelle 1993)

What is the maximum number of incidences between m points and
n hyperplanes in Rd , assuming the incidence graph is Ks,s-free?
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Theorem (Apfelbaum-Sharir)

If P is a set of m points, and H is a set of n hyperplanes in Rd

such that the incidence graph is Ks,s -free, then

I (P,H) = Os((mn)1−
1

d+1 +m + n).

Lower bound (Sudakov, T. 2023): there exists s = s(d) such that

I (P,H) ⪆

(mn)
1− 2d+3

(d+2)(d+3) if d is odd,

(mn)
1− 2d2+d−2

(d+2)(d2+2d−2) if d is even.
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Theorem (Milojević, Sudakov, T. 2024+)

Let P be a set of m points, H a set of n hyperplanes in Fd ,
n = mα, such that the incidence graph is Ks,s -free. Then

I (P,H) ≤


Os,d(m) if α ∈ (0, 1

d ],

Os,d(m
1− 1

d+2−t n) if α ∈ [ t−1
d+2−t ,

t
d+2−t ], t ∈ {2, . . . , d},

Os,d(mn1−
1
t ) if α ∈ [ t

d+2−t ,
t

d+1−t ] t ∈ {2, . . . , d},
Os,d(n) if α ∈ [d ,∞).

This is sharp: for every m, n, there exists a field F = F(d ,m, n)
and a set of points and hyperplanes achieving this bound.



Theorem (Milojević, Sudakov, T. 2024+)

Let P be a set of m points, H a set of n hyperplanes in Fd ,
n = mα, such that the incidence graph is Ks,s -free. Then

I (P,H) ≤


Os,d(m) if α ∈ (0, 1

d ],

Os,d(m
1− 1

d+2−t n) if α ∈ [ t−1
d+2−t ,

t
d+2−t ], t ∈ {2, . . . , d},

Os,d(mn1−
1
t ) if α ∈ [ t

d+2−t ,
t

d+1−t ] t ∈ {2, . . . , d},
Os,d(n) if α ∈ [d ,∞).

This is sharp: for every m, n, there exists a field F = F(d ,m, n)
and a set of points and hyperplanes achieving this bound.



Corollary

Let P be a set of m points, H a set of n hyperplanes in Fd , such
that the incidence graph is Ks,s -free. Then

I (P,H) ≤ Os,d((mn)1−
1

d+2 +m + n).

Moreover, if m = n
t

d+1−t for some integer t ∈ {2, . . . , d}, then

I (P,H) ≤ Os,d((mn)1−
1

d+1 ).

If m = n and d is odd, same bound as Apfelbaum-Sharir!
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d = 3

Point-plane incidence graphs in F3 contain no induced

P3

Lemma

Let G be a bipartite graph with n + n vertices with no induced P3,
and no Ks,s . Then

e(G ) = Os(n
3/2).

Idea: dependent random choice
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Lower bound

Subspace evasive sets: A set S ⊂ Fd is (k , s)-subspace-evasive if
∀ k-dimensional affine subspace contains less than s elements of S .

Lemma (Dvir, Lovett 2012)

There exists s = s(d) such that for every prime p, there is a
(k , s)-subspace evasive set in Fd

p of size pd−k .

Construction:

P ⊂ Fd
p be a (d − t, s)-subspace-evasive set of size pt ,

N ⊂ Fd
p be a (t − 1, s)-subspace-evasive set of size pd−t+1,

H is the set of all hyperplanes with normalvector in N.
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size: number of edges.

Theorem (Apfelbaum and Sharir)

Given m points and n hyperplanes in Rd , m ≤ n, with I = εmn
incidences, ε > n−1/(d−1), the incidence graph contains a complete
bipartite graph of size Ω(ϵd−1mn).
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Theorem (Milojević, Sudakov, T.)

Given m points and n hyperplanes in Fd , m ≤ n, with I = εmn
incidences, the incidence graph contains a complete bipartite graph
of size

Ωd(ε
d−1mn) if ε > 100max{m− 1

d−1 , n−
1
d }

Ωd(εn) if ε <
1

4
max{m− 1

d−1 , n−
1
d }.

These bounds are sharp.
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