Point-hyperplane incidences via extremal graph theory

István Tomon Umeå University

joint work with Aleksa Milojević and Benny Sudakov

Szemerédi-Trotter theorem (1983)

Let P be a set of m points and L be a set of n lines in \mathbb{R}^2 . Then

$$
I(P, L) = O(m^{2/3}n^{2/3} + m + n).
$$

Lemma

Let P be a set of m points and L be a set of n lines in \mathbb{F}^2 , $m \ge n$. Then

$$
I(P,L) = O(m^{1/2}n + m).
$$

Lemma

Let P be a set of m points and L be a set of n lines in \mathbb{F}^2 , $m \ge n$. Then

$$
I(P,L)=O(m^{1/2}n+m).
$$

Upper bound: Point-line incidence graphs are $K_{2,2}$ -free $+$ Kővári-Sós-Turán theorem

Lemma

Let P be a set of m points and L be a set of n lines in \mathbb{F}^2 , $m \ge n$. Then

$$
I(P,L) = O(m^{1/2}n + m).
$$

Upper bound: Point-line incidence graphs are $K_{2,2}$ -free $+$ Kővári-Sós-Turán theorem

Lower bound: choose p prime $p \approx \sqrt{2}$ m $P = \mathbb{F}_p^2$ and L arbitrary set of n lines.

High dimension

There is a set of m points and a set of n planes in \mathbb{R}^3 with mn incidences.

There is a set of m points and a set of n planes in \mathbb{R}^3 with mn incidences.

Problem (Chazelle 1993)

What is the maximum number of incidences between m points and *n* hyperplanes in \mathbb{R}^d , assuming the incidence graph is $\mathsf{K}_{s,s}$ -free?

Theorem (Apfelbaum-Sharir)

If P is a set of m points, and H is a set of n hyperplanes in \mathbb{R}^d such that the incidence graph is $K_{s,s}$ -free, then

$$
I(P, H) = Os((mn)^{1-\frac{1}{d+1}} + m + n).
$$

Theorem (Apfelbaum-Sharir)

If P is a set of m points, and H is a set of n hyperplanes in \mathbb{R}^d such that the incidence graph is $K_{s,s}$ -free, then

$$
I(P, H) = Os((mn)^{1-\frac{1}{d+1}} + m + n).
$$

Lower bound (Sudakov, T. 2023): there exists $s = s(d)$ such that

$$
I(P, H) \gtrsim \begin{cases} (mn)^{1-\frac{2d+3}{(d+2)(d+3)}} & \text{if } d \text{ is odd,} \\ (mn)^{1-\frac{2d^2+d-2}{(d+2)(d^2+2d-2)}} & \text{if } d \text{ is even.} \end{cases}
$$

Theorem (Milojević, Sudakov, T. 2024+)

Let P be a set of m points, H a set of n hyperplanes in \mathbb{F}^d , $n = m^{\alpha}$, such that the incidence graph is $K_{s,s}$ -free. Then

$$
I(P, H) \leq \begin{cases} O_{s,d}(m) & \text{if } \alpha \in (0, \frac{1}{d}], \\ O_{s,d}(m^{1-\frac{1}{d+2-t}}n) & \text{if } \alpha \in [\frac{t-1}{d+2-t}, \frac{t}{d+2-t}], \ t \in \{2, ..., d\}, \\ O_{s,d}(mn^{1-\frac{1}{t}}) & \text{if } \alpha \in [\frac{t}{d+2-t}, \frac{t}{d+1-t}] \ t \in \{2, ..., d\}, \\ O_{s,d}(n) & \text{if } \alpha \in [d, \infty). \end{cases}
$$

Theorem (Milojević, Sudakov, T. 2024 $+$)

Let P be a set of m points, H a set of n hyperplanes in \mathbb{F}^d , $n = m^{\alpha}$, such that the incidence graph is $K_{s,s}$ -free. Then

$$
I(P, H) \leq \begin{cases} O_{s,d}(m) & \text{if } \alpha \in (0, \frac{1}{d}], \\ O_{s,d}(m^{1-\frac{1}{d+2-t}}n) & \text{if } \alpha \in [\frac{t-1}{d+2-t}, \frac{t}{d+2-t}], \ t \in \{2, ..., d\}, \\ O_{s,d}(mn^{1-\frac{1}{t}}) & \text{if } \alpha \in [\frac{t}{d+2-t}, \frac{t}{d+1-t}] \ t \in \{2, ..., d\}, \\ O_{s,d}(n) & \text{if } \alpha \in [d, \infty). \end{cases}
$$

This is sharp: for every m, n, there exists a field $\mathbb{F} = \mathbb{F}(d, m, n)$ and a set of points and hyperplanes achieving this bound.

Corollary

Let P be a set of m points, H a set of n hyperplanes in \mathbb{F}^d , such that the incidence graph is $K_{s,s}$ -free. Then

$$
I(P, H) \leq O_{s,d}((mn)^{1-\frac{1}{d+2}} + m + n).
$$

Moreover, if $m = n^{\frac{t}{d+1-t}}$ for some integer $t \in \{2,\ldots,d\}$, then

 $I(P, H) \leq O_{s,d}((mn)^{1-\frac{1}{d+1}}).$

Corollary

Let P be a set of m points, H a set of n hyperplanes in \mathbb{F}^d , such that the incidence graph is $K_{s,s}$ -free. Then

$$
I(P, H) \leq O_{s,d}((mn)^{1-\frac{1}{d+2}} + m + n).
$$

Moreover, if $m = n^{\frac{t}{d+1-t}}$ for some integer $t \in \{2,\ldots,d\}$, then $I(P, H) \leq O_{s,d}((mn)^{1-\frac{1}{d+1}}).$

If $m = n$ and d is odd, same bound as Apfelbaum-Sharir!

Point-plane incidence graphs in \mathbb{F}^3 contain no induced

Point-plane incidence graphs in \mathbb{F}^3 contain no induced

Lemma

Let G be a bipartite graph with $n + n$ vertices with no induced P_3 , and no $\mathcal{K}_{\mathfrak{s},\mathfrak{s}}$. Then

 $e(G) = O_s(n^{3/2}).$

Point-plane incidence graphs in \mathbb{F}^3 contain no induced

Lemma

Let G be a bipartite graph with $n + n$ vertices with no induced P_3 , and no $\mathcal{K}_{\mathfrak{s},\mathfrak{s}}$. Then

$$
e(G)=O_s(n^{3/2}).
$$

Idea: dependent random choice

General d

General d

Point-plane incidence graphs in \mathbb{F}^3 contain no induced

General d

Point-plane incidence graphs in \mathbb{F}^3 contain no induced

Lemma

Let G be a bipartite graph with $m + n$ vertices, no induced P_d , and no $\mathcal{K}_{\mathsf{s},\mathsf{s}}$. Then

$$
e(G) \leq \begin{cases} O_{s,d}(m) & \text{if } \alpha \in (0, \frac{1}{d}], \\ O_{s,d}(m^{1-\frac{1}{d+2-t}}, n) & \text{if } \alpha \in [\frac{t-1}{d+2-t}, \frac{t}{d+2-t}], \ t \in \{2, ..., d\}, \\ O_{s,d}(mn^{1-\frac{1}{t}}) & \text{if } \alpha \in [\frac{t}{d+2-t}, \frac{t}{d+1-t}] \ t \in \{2, ..., d\}, \\ O_{s,d}(n) & \text{if } \alpha \in [d, \infty). \end{cases}
$$

Subspace evasive sets: A set $S \subset \mathbb{F}^d$ is (k, s) -subspace-evasive if \forall k-dimensional affine subspace contains less than s elements of S.

Subspace evasive sets: A set $S \subset \mathbb{F}^d$ is (k, s) -subspace-evasive if \forall k-dimensional affine subspace contains less than s elements of S.

Lemma (Dvir, Lovett 2012)

There exists $s = s(d)$ such that for every prime p, there is a (k,s) -subspace evasive set in \mathbb{F}_p^d of size $p^{d-k}.$

Subspace evasive sets: A set $S \subset \mathbb{F}^d$ is (k, s) -subspace-evasive if \forall k-dimensional affine subspace contains less than s elements of S.

Lemma (Dvir, Lovett 2012)

There exists $s = s(d)$ such that for every prime p, there is a (k,s) -subspace evasive set in \mathbb{F}_p^d of size $p^{d-k}.$

Construction:

Subspace evasive sets: A set $S \subset \mathbb{F}^d$ is (k, s) -subspace-evasive if \forall k-dimensional affine subspace contains less than s elements of S.

Lemma (Dvir, Lovett 2012)

There exists $s = s(d)$ such that for every prime p, there is a (k,s) -subspace evasive set in \mathbb{F}_p^d of size $p^{d-k}.$

Construction:

 $P \subset \mathbb{F}_p^d$ be a $(d-t,s)$ -subspace-evasive set of size p^t ,

Subspace evasive sets: A set $S \subset \mathbb{F}^d$ is (k, s) -subspace-evasive if \forall k-dimensional affine subspace contains less than s elements of S.

Lemma (Dvir, Lovett 2012)

There exists $s = s(d)$ such that for every prime p, there is a (k,s) -subspace evasive set in \mathbb{F}_p^d of size $p^{d-k}.$

Construction:

- $P \subset \mathbb{F}_p^d$ be a $(d-t,s)$ -subspace-evasive set of size p^t ,
- $N \subset \mathbb{F}_p^d$ be a $(t-1, s)$ -subspace-evasive set of size p^{d-t+1} ,

Subspace evasive sets: A set $S \subset \mathbb{F}^d$ is (k, s) -subspace-evasive if \forall k-dimensional affine subspace contains less than s elements of S.

Lemma (Dvir, Lovett 2012)

There exists $s = s(d)$ such that for every prime p, there is a (k,s) -subspace evasive set in \mathbb{F}_p^d of size $p^{d-k}.$

Construction:

 $P \subset \mathbb{F}_p^d$ be a $(d-t,s)$ -subspace-evasive set of size p^t ,

 $N \subset \mathbb{F}_p^d$ be a $(t-1, s)$ -subspace-evasive set of size p^{d-t+1} ,

 H is the set of all hyperplanes with normalvector in N.

Problem (Chazelle)

Given m points and n hyperplanes in \mathbb{R}^d with *I* incidences, what is the size of the largest complete bipartite graph in the incidence graph.

Problem (Chazelle)

Given m points and n hyperplanes in \mathbb{R}^d with *I* incidences, what is the size of the largest complete bipartite graph in the incidence graph.

size: number of edges.

Problem (Chazelle)

Given m points and n hyperplanes in \mathbb{R}^d with *I* incidences, what is the size of the largest complete bipartite graph in the incidence graph.

size: number of edges.

Theorem (Apfelbaum and Sharir)

Given m points and n hyperplanes in \mathbb{R}^d , $m \le n$, with $I = \varepsilon mn$ incidences, $\varepsilon > n^{-1/(d-1)}$, the incidence graph contains a complete bipartite graph of size $\Omega(\epsilon^{d-1} m n).$

Theorem (Milojević, Sudakov, T.)

Given m points and n hyperplanes in \mathbb{F}^d , $m \le n$, with $I = \varepsilon mn$ incidences, the incidence graph contains a complete bipartite graph of size

$$
\Omega_d(\varepsilon^{d-1}mn) \text{ if } \varepsilon > 100 \max\{m^{-\frac{1}{d-1}}, n^{-\frac{1}{d}}\}
$$

$$
\Omega_d(\varepsilon n) \text{ if } \varepsilon < \frac{1}{4} \max\{m^{-\frac{1}{d-1}}, n^{-\frac{1}{d}}\}.
$$

Theorem (Milojević, Sudakov, T.)

Given m points and n hyperplanes in \mathbb{F}^d , $m \le n$, with $I = \varepsilon mn$ incidences, the incidence graph contains a complete bipartite graph of size

$$
\Omega_d(\varepsilon^{d-1}mn) \text{ if } \varepsilon > 100 \max\{m^{-\frac{1}{d-1}}, n^{-\frac{1}{d}}\}
$$

$$
\Omega_d(\varepsilon n) \text{ if } \varepsilon < \frac{1}{4} \max\{m^{-\frac{1}{d-1}}, n^{-\frac{1}{d}}\}.
$$

These bounds are sharp.