# THE HONEYCOMB CONJECTURE IN NORMED PLANES

## Zsolt Lángi<sup>1</sup> and Shanshan Wang<sup>2</sup>

<sup>1</sup> Alfréd Rényi Institute of Mathematics, Budapest, <sup>2</sup> Budapest University of Technology and Economics

July, 2024

<sup>1</sup> Alfréd Rényi Institute of Mathematics, Budapest, <sup>2</sup> Budapest University of Technology and Economics

#### PRELIMINARIES

- A convex mosaic or tiling T of R<sup>2</sup> is a family of mutually nonoverlapping convex disk, called cells or tiles, with the property that U T = R<sup>2</sup>. A convex tiling is normal if for some 0 < r̂ < R̂, every cell contains a Euclidean disk of radius r̂ and is contained in a Euclidean disk of radius R̂.</p>
- A convex tiling is called *edge-to-edge*, if every edge of a cell belongs to exactly one more cell.
- **(3)**  $B^2$ : Closed Euclidean unit disk centered at *o*.

## MOTIVATION

#### CONJECTURE (HONEYCOMB CONJECTURE, VARRO)

In a decomposition of the Euclidean plane into cells of unit area, the average perimeter of the cells is minimal for the regular hexagonal tiling.

- In the 1940s, L. Fejes Tóth proved for normal, convex tilings.
- In the 2000s, Hales dropped the condition of convexity.

#### QUESTION

For a normed plane M, Is it true that a tiling of M with unit area tiles, the average perimeter of a cell is minimal for a hexagonal tiling?

## MOTIVATION

#### CONJECTURE (HONEYCOMB CONJECTURE, VARRO)

In a decomposition of the Euclidean plane into cells of unit area, the average perimeter of the cells is minimal for the regular hexagonal tiling.

- In the 1940s, L. Fejes Tóth proved for normal, convex tilings.
- In the 2000s, Hales dropped the condition of convexity.

#### QUESTION

For a normed plane  $\mathcal{M}$ , Is it true that a tiling of  $\mathcal{M}$  with unit area tiles, the average perimeter of a cell is minimal for a hexagonal tiling?

- Every origin-symmetric convex disk *M* is the unit disk of a normed plane; and the unit disk of a normed plane is an origin-symmetric convex disk.
- M-Perimeter of a convex disk K: supremum of the total edge lengths of the convex polygons (measured in the norm of M) inscribed in K, denoted by perim<sub>M</sub>(K).
- Every 'meaning' definition of area is a scalar multiple of Euclidean area. We assume it is Euclidean area, denoted by area(·).

#### DEFINITION

Let  $\mathcal{T}$  be a convex, normal tiling in the normed plane  $\mathcal{M}$ . For any R > 0, let  $\mathcal{T}(R)$  denote the family of cells of  $\mathcal{T}$  contained in  $R\mathbf{B}^2$ . Let  $\alpha > 0$ . We define the *lower average*  $\alpha$ *th powered perimeter* of a cell of  $\mathcal{T}$  as the quantity

$$\underline{P}_{\alpha}(\mathcal{T}) = \liminf_{R \to \infty} \frac{\sum_{\mathcal{C} \in \mathcal{T}(R)} (\mathsf{perim}_{\mathcal{M}}(\mathcal{C}))^{\alpha}}{\mathsf{card}(\mathcal{T}(R))}$$

Similarly We define the upper average  $\alpha$ th powered perimeter of a cell of  $\mathcal{T}$ , denoted by  $\overline{P}_{\alpha}(\mathcal{T})$ , replacing lim inf by lim sup. If  $\underline{P}_{\alpha}(\mathcal{T}) = \overline{P}_{\alpha}(\mathcal{T})$ , we call this quantity the average  $\alpha$ th powered perimeter of a cell of  $\mathcal{T}$ , and denote it by  $P_{\alpha}(\mathcal{T})$ .

- If α = 1, we omit it from the notation, and called the corresponding quantities the lower/upper/- average perimeter.
- We define the quantities <u>P</u><sub>log</sub>(T), <u>P</u><sub>log</sub>(T) and P<sub>log</sub>(T) similarly, replacing (perim<sub>M</sub>(C))<sup>α</sup> by log (perim<sub>M</sub>(C)) in the above definitions.

<sup>1</sup> Alfréd Rényi Institute of Mathematics, Budapest, <sup>2</sup> Budapest University of Technology and Economics

## A WEAKER VERSION OF HONEYCOMB CONJECTURE IN ANY NORMED PLANES

#### THEOREM (LÁNGI, WANG)

For any normed plane M there is a hexagonal tiling  $T_{hex}$  of M such that for any convex, normal tiling T of M, we have

 $\underline{P}_2(\mathcal{T}) \geq P_2(\mathcal{T}_{hex}).$ 

#### REMARK

For any  $\alpha, \beta \in (0, \infty)$  with  $\alpha < \beta$  and any normal, convex tiling  $\mathcal{T}$  in  $\mathcal{M}$ , we have  $\exp(\underline{P}_{\log}(\mathcal{T})) \leq (\underline{P}_{\alpha}(\mathcal{T}))^{1/\alpha} \leq (\underline{P}_{\beta}(\mathcal{T}))^{1/\beta}$  and  $\exp(\overline{P}_{\log}(\mathcal{T})) \leq (\overline{P}_{\alpha}(\mathcal{T}))^{1/\alpha} \leq (\overline{P}_{\beta}(\mathcal{T}))^{1/\beta}$ . Furthermore, if  $\mathcal{T}$  is a hexagonal tiling, we have equality in all the previous inequalities.

# A WEAKER VERSION OF HONEYCOMB CONJECTURE IN ANY NORMED PLANES

#### THEOREM (LÁNGI, WANG)

For any normed plane M there is a hexagonal tiling  $T_{hex}$  of M such that for any convex, normal tiling T of M, we have

 $\underline{P}_2(\mathcal{T}) \geq P_2(\mathcal{T}_{hex}).$ 

#### REMARK

For any  $\alpha, \beta \in (0, \infty)$  with  $\alpha < \beta$  and any normal, convex tiling  $\mathcal{T}$  in  $\mathcal{M}$ , we have  $\exp(\underline{P}_{\log}(\mathcal{T})) \leq (\underline{P}_{\alpha}(\mathcal{T}))^{1/\alpha} \leq (\underline{P}_{\beta}(\mathcal{T}))^{1/\beta}$  and  $\exp(\overline{P}_{\log}(\mathcal{T})) \leq (\overline{P}_{\alpha}(\mathcal{T}))^{1/\alpha} \leq (\overline{P}_{\beta}(\mathcal{T}))^{1/\beta}$ . Furthermore, if  $\mathcal{T}$  is a hexagonal tiling, we have equality in all the previous inequalities.

#### THEOREM (BUSEMANN)

Let  $\mathcal{M}$  be a normed plane. The area enclosed by a simple, closed curve  $\Gamma$  of a given  $\mathcal{M}$ -length is maximized if  $\Gamma$  is the boundary of a plane convex body K homothetic to the so-called isoperimetrix  $\mathcal{M}_{iso}$  of  $\mathcal{M}$ , obtained as the polar of the rotated copy of the unit disk  $\mathcal{M}$  of  $\mathcal{M}$  by  $\frac{\pi}{2}$  (see Figure 1).



FIGURE: The isoperimetrix  $M_{iso}$  of a norm with unit disk M. The dotted circle is the Euclidean unit disk  $\mathbf{B}^2$  centered at o. The left-hand side panel shows M and its polar  $M^\circ$ , the isoperimetrix in the righ-hand side panel is a rotated copy of  $M^\circ$  by  $\frac{\pi}{2}$ 

#### THEOREM (CHAKERIAN)

Let  $\mathcal{M}$  be a normed plane with unit disk M. Let the isoperimetrix of the plane be  $M_{iso}$ . Let K be an arbitrary convex n-gon in  $\mathcal{M}$ , and let  $K^*$  be the convex n-gon circumscribed about  $M_{iso}$  whose sides have the same outer unit normals as the sides of K. Let the M-perimeter of K be L, the area of K be F, and the area of  $K^*$  be f. Then

$$L^2-4fF\geq 0,$$

with equality if and only if K is homothetic to  $K^*$ .

#### THEOREM (DOWKER)

For any convex disk K in  $\mathbb{R}^2$ , let

 $A_{K}(n) = \inf \{ \operatorname{area}(P) : P \text{ is a convex } n \text{-gon circumscribed about } K \}.$ 

Then the sequence  $\{A_{\mathcal{K}}(n)\}$  is convex. In other words, for any  $n \ge 4$ , we have

$$A_{\mathcal{K}}(n-1) + A_{\mathcal{K}}(n+1) \geq 2A_{\mathcal{K}}(n).$$

- v(C): number of sides of the cell *C* of the convex, normal tiling T.
- **2**  $\mathcal{T}(R)$ : family of cells of  $\mathcal{T}$  in  $R\mathbf{B}^2$  of radius R.

#### THEOREM (DOWKER)

Let *K* be an o-symmetric plane convex body. Then, for every  $m \ge 2$ , there is a centrally symmetric convex (2m)-gon *P* circumscribed about *K* with area $(P) = A_K(2m)$ .

#### Remark

The upper average number of sides in any normal, convex tiling is at most 6.

<sup>1</sup> Alfréd Rényi Institute of Mathematics, Budapest, <sup>2</sup> Budapest University of Technology and Economics

For any  $C \in \mathcal{T}(R)$ , let  $C^*$  denote the convex polygon circumscribed about  $M_{iso}$  such that the sides of C and  $C^*$  have the same outer unit normals, and let v(C) denote the number of sides of C. Then:

$$\begin{split} \underline{P}_{2}(\mathcal{T}) &= \liminf_{R \to \infty} \frac{\sum_{C \in \mathcal{T}(R)} \left( \operatorname{perim}_{M}(C) \right)^{2}}{\operatorname{card}(\mathcal{T}(R))} \\ &\geq 4 \liminf_{R \to \infty} \frac{\sum_{C \in \mathcal{T}(R)} \left( \operatorname{area}(C^{*}) \right)}{\operatorname{card} \mathcal{T}(R)} \\ &\geq 4 \liminf_{R \to \infty} \frac{\sum_{C \in \mathcal{T}(R)} \left( A_{M_{iso}}(v(C)) \right)}{\operatorname{card} \mathcal{T}(R)} \geq 4A_{M_{iso}}(6) \end{split}$$

This is attained by a hexagonal tiling.

<sup>1</sup> Alfréd Rényi Institute of Mathematics, Budapest, <sup>2</sup> Budapest University of Technology and Economics

## **RELATED RESULTS**

#### DEFINITION

Let  $\alpha \in (0, \infty)$ . We say that the normed plane  $\mathcal{M}$  satisfies the  $\alpha$ -honeycomb property, if there is a hexagonal tiling  $\mathcal{T}_{hex}$  of  $\mathcal{M}$  such that for any convex, normal tiling  $\mathcal{T}$  of  $\mathcal{M}$ , we have

$$\underline{P}_{\alpha}(\mathcal{T}) \geq P_{\alpha}(\mathcal{T}_{hex}).$$

Similarly, we say that it satisfies the *log-honeycomb* (or 0-*honeycomb*) *property* if the same holds for the lower average log-perimeter of a cell of T.

## **RELATED RESULTS**

#### DEFINITION

Let  $\alpha \in (0, \infty)$ . We say that a convex disk *K* satisfies the  $\alpha$ -Dowker property if the sequence  $\{A_K^{\alpha}(n)\}$  is convex. Furthermore, we say that it satisfies the *log-Dowker* (or 0-Dowker) property if the sequence  $\{\log A_K(n)\}$  is convex.

## **RELATED RESULTS**

#### DEFINITION

Let  $\alpha \in (0, \infty)$ . We say that a convex disk *K* satisfies the *weak*  $\alpha$ -*Dowker property* if

$$rac{n-6}{n-m}A^lpha_K(m)+rac{6-m}{n-m}A^lpha_K(n)\geq A^lpha_K(6)$$

holds for any  $3 \le m < 6 < n$ . Similarly, we say that *K* satisfies the *weak log-Dowker* (or *weak* 0*-Dowker*) *property* if

$$\frac{n-6}{n-m}\log A_{\mathcal{K}}(m) + \frac{6-m}{n-m}\log A_{\mathcal{K}}(n) \geq \log A_{\mathcal{K}}(6)$$

holds for any  $3 \le m < 6 < n$ .

<sup>1</sup> Alfréd Rényi Institute of Mathematics, Budapest, <sup>2</sup> Budapest University of Technology and Economics

#### THEOREM (LÁNGI, WANG)

Let  $\mathcal{M}$  be a normed splane. For any  $\alpha \in (0, \infty)$ , if the isoperimetrix  $M_{iso}$  of  $\mathcal{M}$  satisfies the weak  $\alpha$ -Dowker property, then the normed plane  $\mathcal{M}$  satisfies the  $(2\alpha)$ -honeycomb property.

#### QUESTION

Which convex disks satisfy the (weak)  $\frac{1}{2}$ -Dowker property?

#### Remark

It is an elementary exercise to check that  $A_{\mathbf{B}^2}(n) = n \tan \frac{\pi}{n}$ , implying that  $\mathbf{B}^2$  satisfies the log-Dowker property, and the Euclidean plane satisfies the log-honeycomb property.

## **RSULTS ABOUT POLYGONAL NORMS**

#### Theorem

If the unit disk of  $\mathcal{M}$  is a convex (2k)-gon and  $\alpha \in (0, \infty)$ , then there is an algorithm that checks in  $\mathcal{O}(k^3 \log^2 k)$  steps if  $M_{iso}$ satisfies the (weak)  $\alpha$ -Dowker property or not.

#### THEOREM (LÁNGI, WANG)

A regular (2k)-gon  $P_k$ , with  $k \ge 2$ , satisfies the weak  $\frac{1}{2}$ -Dowker property if and only if  $k \ne 4, 5, 7$ .

#### THEOREM (LÁNGI, WANG)

If the unit disk of a normed plane M is a regular (2k)-gon with  $k \neq 4, 5, 7$ , then M satisfies the honeycomb property.

## **Results about polygonal norms**

#### Remark

If  $k \ge 4$ , then  $A_{2k-2}(P_k)$  is a convex combination of  $A_{2k-1}(P_k)$ and  $A_{2k-3}(P_k)$ , implying that in this case  $P_k$  does not satisfy the  $\alpha$ -Dowker property for any  $\alpha < 1$ .

<sup>1</sup> Alfréd Rényi Institute of Mathematics, Budapest, <sup>2</sup> Budapest University of Technology and Economics

## **Results about general norms**

#### THEOREM (LÁNGI, WANG, 2024)

If *K* is a convex disk in  $\mathbb{R}^2$  with  $C^4$ -class boundary and strictly positive curvature everywhere, then there is some value  $n(K) \in \mathbb{R}$  such that for any  $n \ge n(K)$ , we have

 $\log A_{\mathcal{K}}(n-1) + \log A_{\mathcal{K}}(n+1) \geq 2 \log A_{\mathcal{K}}(n).$ 

#### THEOREM (LÁNGI, WANG)

Let *K* be smooth and strictly convex. Then there is some value  $\alpha < 1$  such that *K* satisfies the weak  $\alpha$ -Dowker property.

Recall that  $A_{\mathbf{B}^2}(n) = n \tan \frac{\pi}{n}$ . In the following theorem, we let

$$\varepsilon_{0} = \frac{\sqrt{A_{B^{2}}(5)} + \sqrt{A_{B^{2}}(7)} - 2\sqrt{A_{B^{2}}(6)}}{\sqrt{A_{B^{2}}(5)} + \sqrt{A_{B^{2}}(7)} + 2\sqrt{A_{B^{2}}(6)}} = 0.002623\dots,$$

and denote the Hausdorff distance of the convex bodies K, L by  $d_H(K, L)$ .

#### THEOREM (LÁNGI, WANG)

Let  $\mathcal{M}$  be a normed plane with unit disk M, and assume that  $d_H(M, \mathbf{B}^2) \leq \varepsilon_0$ . Then  $\mathcal{M}$  satisfies the honeycomb property.

<sup>1</sup> Alfréd Rényi Institute of Mathematics, Budapest, <sup>2</sup> Budapest University of Technology and Economics

## A CONJECTURE OF STEINHAUS

#### DEFINITION

Let  $\mathcal{T}$  be a tiling of a normed plane  $\mathcal{M}$ . Let  $\mathcal{T}(R)$  denote the family of cells of  $\mathcal{T}$  in  $R\mathbf{B}^2$ . Then the *lower average isoperimetric ratio* of a cell of  $\mathcal{T}$  is defined as

$$\underline{l}(\mathcal{T}) = \liminf_{R \to \infty} \frac{\sum_{\mathcal{C} \in \mathcal{T}(R)} \frac{\operatorname{perim}_{M}(\mathcal{C})^{2}}{\operatorname{area}(\mathcal{C})}}{\operatorname{card}(\mathcal{T}(\mathcal{C}))}$$

If we replace the lim inf in the above definition by lim sup, we obtain the *upper average isoperimetric ratio*  $\overline{I}(\mathcal{T})$  of a cell. If these quantities are equal, the common value is called the *average isoperimetric ratio* of a cell, denoted by  $I(\mathcal{T})$ .

## A CONJECTURE OF STEINHAUS

#### CONJECTURE (STEINHAUS)

For any tiling  $\mathcal{T}$  in the Euclidean plane with tiles whose diameters are at least D for some fixed D > 0, the maximum isoperimetric ratio  $\frac{\text{perim}(C)^2}{\text{area}(C)}$  of the cells C of  $\mathcal{T}$  is minimal if  $\mathcal{T}$  is a regular hexagonal tiling.

#### THEOREM (LÁNGI, WANG)

For any normed plane M there is a hexagonal tiling  $T_{hex}$  of M such that for any convex, normal tiling T of M, we have

 $\underline{\textit{I}}(\mathcal{T}) \geq \textit{I}(\mathcal{T}_{\textit{hex}}).$ 

Furthermore, if M is a Euclidean plane, then  $T_{hex}$  is a regular hexagonal tiling.

# Thank you!

<sup>1</sup> Alfréd Rényi Institute of Mathematics, Budapest, <sup>2</sup> Budapest University of Technology and Economics