The Regge symmetry, confocal conics, and the Schl"afli formula

Arseniy Akopyan (IST Austria)
joint work with
Ivan Izmestiev (University of Fribourg → TU Wien)
Planar magic

\[s = \frac{a + b + c + d}{2} \]
Planar magic

\[s = \frac{a + b + c + d}{2} \]
The proof
The proof

\[a \quad b \]

\[c \quad d \]

\[s - a \quad s - b \]

\[s - c \quad s - d \]
The proof
The Ivory theorem
The Ivory theorem
The Regge symmetry

\[s = \frac{a + b + c + d}{2} \]
Theorem (G. Ponzano and T. Regge, 1968)

Tetrahedra Δ and $\bar{\Delta}$ have equal volume.
Theorem (G. Ponzano and T. Regge, 1968)

Tetrahedra Δ and $\bar{\Delta}$ have equal volume.

Proof.

$$\text{Vol}(\Delta)^2 = \frac{1}{288} \begin{vmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & a^2 & b^2 & y^2 \\ 1 & a^2 & 0 & x^2 & d^2 \\ 1 & b^2 & x^2 & 0 & c^2 \\ 1 & y^2 & d^2 & c^2 & 0 \end{vmatrix}$$
Theorem (G. Ponzano and T. Regge, 1968)

Tetrahedra Δ and $\bar{\Delta}$ have equal volume.

Proof.

\[
\text{Vol}(\Delta)^2 = \frac{1}{288} \begin{vmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & a^2 & b^2 & y^2 \\
1 & a^2 & 0 & x^2 & d^2 \\
1 & b^2 & x^2 & 0 & c^2 \\
1 & y^2 & d^2 & c^2 & 0 \\
\end{vmatrix}
\]

\[
= \frac{1}{288} \begin{vmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & (s-a)^2 & (s-b)^2 & y^2 \\
1 & (s-a)^2 & 0 & x^2 & (s-d)^2 \\
1 & (s-b)^2 & x^2 & 0 & (s-c)^2 \\
1 & y^2 & (s-d)^2 & (s-c)^2 & 0 \\
\end{vmatrix} = \text{Vol}(\bar{\Delta})^2
\]
Theorem

Tetrahedra Δ and $\tilde{\Delta}$ have equal volume in Euclidean, Hyperbolic, and Spherical spaces.

For hyperbolic case it was proved by Y. Mohanty (2003). She also proved scissors congruence of Δ and $\tilde{\Delta}$.
More magic!

Theorem

1) The dihedral angles at the x-edge in Δ and $\bar{\Delta}$ are equal. The same holds for the dihedral angles at the y-edge.
Theorem

1) The dihedral angles at the x-edge in Δ and $\bar{\Delta}$ are equal. The same holds for the dihedral angles at the y-edge.

2) If α, β, γ, δ are the dihedral angles at the edges a, b, c, d of Δ, then the dihedral angles at the edges $s - a$, $s - b$, $s - c$, $s - d$ in $\bar{\Delta}$ are equal to $\sigma - \alpha$, $\sigma - \beta$, $\sigma - \gamma$, $\sigma - \delta$, where $\sigma = \frac{\alpha + \beta + \gamma + \delta}{2}$.
Corollary

In three dimensional sphere the Regge symmetry operation and dual operation commute.
Theorem

1) *The dihedral angles at the x-edge in Δ and $\bar{\Delta}$ are equal. The same holds for the dihedral angles at the y-edge.*
Theorem
2*) The solid angle at the \((x, a, d)\) vertex is equal to the solid angle at the \((x, s - b, s - c)\) vertex etc.;

Area of spherical triangle: \(\alpha + \phi + \delta - \pi\).
For a triangle with fixed angle ϕ:

$$\text{Area} \propto \tan \frac{z}{2} \tan \frac{t}{2}$$
Unbelievable formula!

For a triangle with fixed angle ϕ:

$$\text{Area} \propto \tan \frac{z}{2} \tan \frac{t}{2}$$

The actual formula is:

$$\tan \frac{\text{Area}}{2} = \frac{\tan \frac{z}{2} \tan \frac{t}{2} \sin \phi}{1 + \tan \frac{z}{2} \tan \frac{t}{2} \cos \phi}$$
For a triangle with fixed angle ϕ:

$$\alpha + \delta \simeq \tan \frac{z}{2} \tan \frac{t}{2}$$
Unbelievable formula!

For a triangle with fixed angle ϕ:

\[
\alpha + \delta \approx \tan \frac{z}{2} \tan \frac{t}{2}
\]

\[
\alpha - \delta \approx \frac{\tan \frac{z}{2}}{\tan \frac{t}{2}}
\]
For a triangle with fixed side \(x \):

\[
a + d \approx \tan \frac{\alpha}{2} \tan \frac{\delta}{2}
\]

\[
a - d \approx \frac{\tan \frac{\alpha}{2}}{\tan \frac{\delta}{2}}
\]
Dual version
Dual version

\[\begin{align*}
 a & \quad b \\
 d & \quad c \\
 x & \quad s - d \\
 & \quad x \\
 & \quad s - a \\
 & \quad s - b \\
 & \quad s - c
\end{align*} \]
Dual version

\[a \quad b \quad d \quad c \]

\[x \quad s - d \quad s - c \quad s - a \quad s - b \]

\[a \quad b \quad c \quad d \]

\[x \]
Dual version

\[s - d \quad x \quad s - c\]
Euqual products
Euqual products
Theorem (Schlafli)

For every smooth deformation of a spherical or hyperbolic tetrahedron one has
\[\frac{1}{6} \sum_{i} \ell_i d \theta_i, \]
where the sum is taken over the edges of the tetrahedron, \(\ell_i \) is the length of the i-th side, and \(\theta_i \) is the dihedral angle at the i-th side.

The sign on the right hand side is \(+ \) in the spherical and \(- \) in the hyperbolic case.

For a deformation of a Euclidean tetrahedron one has \(\frac{1}{6} \sum_{i} \ell_i d \theta_i = 0 \), but we do not need this formula.
Volume in the Spherical and Hyperbolic cases

Theorem (Schläfli)

For every smooth deformation of a spherical or hyperbolic tetrahedron one has

\[d \text{Vol} = \pm \frac{1}{2} \sum_{i=1}^{6} \ell_i d\theta_i, \]

where the sum is taken over the edges of the tetrahedron, \(\ell_i \) is the length of the \(i \)-th side, and \(\theta_i \) is the dihedral angle at the \(i \)-th side. The sign on the right hand side is \(+ \) in the spherical and \(- \) in the hyperbolic case.
Volume in the Spherical and Hyperbolic cases

Theorem (Schläfli)

For every smooth deformation of a spherical or hyperbolic tetrahedron one has

\[d \text{Vol} = \pm \frac{1}{2} \sum_{i=1}^{6} \ell_i d\theta_i, \]

where the sum is taken over the edges of the tetrahedron, \(\ell_i \) is the length of the \(i \)-th side, and \(\theta_i \) is the dihedral angle at the \(i \)-th side. The sign on the right hand side is \(+\) in the spherical and \(-\) in the hyperbolic case.

For a deformation of a Euclidean tetrahedron one has \(\sum_{i=1}^{6} \ell_i d\theta_i = 0 \), but we do not need this formula.
Proof for the Spherical and Hyperbolic cases

By the Schläfli formula one has

\[
\frac{d}{dt} \text{Vol}(\Delta_t) = \pm \frac{1}{2} (a\dot{\alpha} + b\dot{\beta} + c\dot{\gamma} + d\dot{\delta} + x\dot{\phi} + t\dot{\psi})
\]

\[
\frac{d}{dt} \text{Vol}(\bar{\Delta}_t) = \pm \frac{1}{2} \left((s - a)(\dot{\sigma} - \dot{\alpha}) + \cdots + (s - d)(\dot{\sigma} - \dot{\delta}) + x\dot{\phi} + t\dot{\psi} \right)
\]
Proof for the Spherical and Hyperbolic cases

By the Schl"afli formula one has

\[
\frac{d}{dt} \text{Vol}(\Delta_t) = \pm \frac{1}{2} (a\dot{\alpha} + b\dot{\beta} + c\dot{\gamma} + d\dot{\delta} + x\dot{\phi} + t\dot{\psi})
\]

\[
\frac{d}{dt} \text{Vol}(\bar{\Delta}_t) = \pm \frac{1}{2} \left((s - a)(\dot{\sigma} - \dot{\alpha}) + \cdots + (s - d)(\dot{\sigma} - \dot{\delta}) + x\dot{\phi} + t\dot{\psi}\right)
\]

A simple computation

\[
(s - a)(\dot{\sigma} - \dot{\alpha}) + \cdots + (s - d)(\dot{\sigma} - \dot{\delta})
\]

\[
= 4s\dot{\sigma} - (a + b + c + d)\dot{\sigma} - s(\dot{\alpha} + \dot{\beta} + \dot{\gamma} + \dot{\delta}) + a\dot{\alpha} + b\dot{\beta} + c\dot{\gamma} + d\dot{\delta}
\]

\[
= a\dot{\alpha} + b\dot{\beta} + c\dot{\gamma} + d\dot{\delta}
\]
Proof for the Spherical and Hyperbolic cases

By the Schlafli formula one has

\[
\frac{d}{dt} \text{Vol}(\Delta_t) = \pm \frac{1}{2} (a\dot{\alpha} + b\dot{\beta} + c\dot{\gamma} + d\dot{\delta} + x\dot{\phi} + t\dot{\psi})
\]

\[
\frac{d}{dt} \text{Vol}(\bar{\Delta}_t) = \pm \frac{1}{2} \left((s - a)(\dot{\sigma} - \dot{\alpha}) + \cdots + (s - d)(\dot{\sigma} - \dot{\delta}) + x\dot{\phi} + t\dot{\psi} \right)
\]

A simple computation

\[
(s - a)(\dot{\sigma} - \dot{\alpha}) + \cdots + (s - d)(\dot{\sigma} - \dot{\delta})
\]

\[
= 4s\dot{\sigma} - (a + b + c + d)\dot{\sigma} - s(\dot{\alpha} + \dot{\beta} + \dot{\gamma} + \dot{\delta}) + a\ddot{\alpha} + b\ddot{\beta} + c\ddot{\gamma} + d\ddot{\delta}
\]

\[
= a\ddot{\alpha} + b\ddot{\beta} + c\ddot{\gamma} + d\ddot{\delta}
\]

Therefore for all t

\[
\frac{d}{dt} \text{Vol}(\Delta_t) = \frac{d}{dt} \text{Vol}(\bar{\Delta}_t) \implies \text{Vol}(\Delta) = \text{Vol}(\bar{\Delta}).
\]
Thank you!