Perron and Frobenius meet Carathéodory
and their other adventures

Alexandr Polyanskii
Moscow Institute of Physics and Technology

joint with Márton Naszódi

Discrete Geometry Days 2
Perron’s Theorem

The simplest form of Perron’s Theorem, 1907

For a square matrix A with positive entries, the spectral radius $\rho(A)$ is an eigenvalue of multiplicity one.
Rankin’s Theorem and its proof

Rankin, 1955

If \(\{v_1, \ldots, v_n\} \) is a set of non-zero unit vectors in \(\mathbb{R}^d \) such that the angle between any two of them is larger than \(\pi/2 \), then \(n \leq d + 1 \).
Rankin’s Theorem and its proof

Rankin, 1955

If \(\{v_1, \ldots, v_n\} \) is a set of non-zero unit vectors in \(\mathbb{R}^d \) such that the angle between any two of them is larger than \(\pi/2 \), then \(n \leq d + 1 \).

Proof, Naszódi+P, 2019+

Suppose \(n = d + 2 \).
Rankin’s Theorem and its proof

Rankin, 1955

If \(\{v_1, \ldots, v_n\} \) is a set of non-zero unit vectors in \(\mathbb{R}^d \) such that the angle between any two of them is larger than \(\pi/2 \), then \(n \leq d + 1 \).

Proof, Naszódi+P, 2019+

Suppose \(n = d + 2 \). Let \(G = \langle v_i, v_j \rangle \) be the Gram matrix.
Rankin’s Theorem and its proof

Rankin, 1955

If \(\{v_1, \ldots, v_n\} \) is a set of non-zero unit vectors in \(\mathbb{R}^d \) such that the angle between any two of them is larger than \(\pi/2 \), then \(n \leq d + 1 \).

Proof, Naszódi+P, 2019+

Suppose \(n = d + 2 \). Let \(G = \langle v_i, v_j \rangle \) be the Gram matrix.

Set \(H = \lambda I_n - G \), where \(\lambda > 1 \)
Rankin’s Theorem and its proof

Rankin, 1955

If \{v_1, \ldots, v_n\} is a set of non-zero unit vectors in \(\mathbb{R}^d \) such that the angle between any two of them is larger than \(\pi/2 \), then \(n \leq d + 1 \).

Proof, Naszódi+P, 2019+

Suppose \(n = d + 2 \). Let \(G = \langle v_i, v_j \rangle \) be the Gram matrix.

Set \(H = \lambda I_n - G \), where \(\lambda > 1 \)

\[\rightarrow \]

All entries of \(H \) are positive
Rankin’s Theorem and its proof

Rankin, 1955

If \(\{v_1, \ldots, v_n\} \) is a set of non-zero unit vectors in \(\mathbb{R}^d \) such that the angle between any two of them is larger than \(\pi/2 \), then \(n \leq d + 1 \).

Proof, Naszódi+P, 2019+

Suppose \(n = d + 2 \). Let \(G = \langle v_i, v_j \rangle \) be the Gram matrix.

Set \(H = \lambda I_n - G \), where \(\lambda > 1 \)

\[\downarrow \]

All entries of \(H \) are positive

\[\downarrow \]

\(\rho(H) \) is the largest eigenvalue of \(H \) of multiplicity one
Proof of Rankin’s Theorem

\(\rho(H) \) is the largest eigenvalue of \(H \) of multiplicity one

\[G \text{ is the Gram matrix} \]
Proof of Rankin’s Theorem

\(\rho(H) \) is the largest eigenvalue of \(H \) of multiplicity one

\(G \) is the Gram matrix

\[\Downarrow \]

\[\alpha_1 \geq \cdots \geq \alpha_d \geq 0 = 0 \] are eigenvalues of \(G \)
$\rho(H)$ is the largest eigenvalue of H of multiplicity one

G is the Gram matrix

\[\alpha_1 \geq \cdots \geq \alpha_d \geq 0 = 0 \text{ are eigenvalues of } G \]

\[\lambda = \lambda \geq \lambda - \alpha_d \geq \cdots \geq \lambda - \alpha_1 \text{ are eigenvalues of } H = \lambda I_n - G \]
Proof of Rankin’s Theorem

$\rho(H)$ is the largest eigenvalue of H of multiplicity one

G is the Gram matrix

⇓

$\alpha_1 \geq \cdots \geq \alpha_d \geq 0 = 0$ are eigenvalues of G

⇓

$\lambda = \lambda \geq \lambda - \alpha_d \geq \cdots \geq \lambda - \alpha_1$ are eigenvalues of $H = \lambda I_n - G$

⇓

This is a contradiction!
The Perron-Frobenius Theorem

Perron’s Theorem, 1907
For a square matrix with positive entries, the spectral radius is an eigenvalue of multiplicity 1, such that its eigenvector has positive entries.

Frobenius’s Theorem, 1912
For a square matrix with non-negative entries, the spectral radius is an eigenvalue such that one of its eigenvectors has non-negative entries.
Carathéodory’s Theorem, 1907

If \(o \in \mathbb{R}^d \) lies in the convex hull of points \(v_1, \ldots, v_n \in \mathbb{R}^d \), then there is a set \(J \subseteq [n], |J| \leq d + 1 \), such that \(o \in \text{conv}\{v_j : j \in J\} \).
Rankin’s Theorem, 1955

If \(\{v_1, \ldots, v_n\} \) is a set of non-zero vectors in \(\mathbb{R}^d \) such that the angle between any two of them is at least \(\frac{\pi}{2} \), then \(n \leq 2d \).
Frobenius’s Theorem implies . . .

Rankin’s Theorem, 1955

If \(\{v_1, \ldots, v_n\} \) is a set of non-zero vectors in \(\mathbb{R}^d \) such that the angle between any two of them is at least \(\frac{\pi}{2} \), then \(n \leq 2d \).

Steinitz’s Theorem, 1913

If \(o \in \mathbb{R}^d \) is an interior point of the convex hull of points \(v_1, \ldots, v_n \in \mathbb{R}^d \), then there is a set \(J \subseteq [n], |J| \leq 2d \), such that the point \(o \in \text{int conv}\{v_j : j \in J\} \).
Almost-equidistant sets

Definition

A set in \mathbb{R}^d is called *almost-equidistant* if among any three points in the set, some two are at unit distance apart.
Almost-equidistant sets

Definition

A set in \mathbb{R}^d is called *almost-equidistant* if among any three points in the set, some two are at unit distance apart.

Conjecture

An almost-equidistant set in \mathbb{R}^d has $O(d)$ points.
Almost-equidistant sets

Definition
A set in \mathbb{R}^d is called *almost-equidistant* if among any three points in the set, some two are at unit distance apart.

Conjecture
An almost-equidistant set in \mathbb{R}^d has $O(d)$ points.

Theorem, Kupavskii+Mustafa+Swanepoel, P, 2019
An almost-equidistant set in \mathbb{R}^d has $O(d^{4/3})$ points.
Almost-equidistant sets

Definition
A set in \mathbb{R}^d is called *almost-equidistant* if among any three points in the set, some two are at unit distance apart.

Conjecture
An almost-equidistant set in \mathbb{R}^d has $O(d)$ points.

Theorem, Kupavskii+Mustafa+Swanepoel, P, 2019
An almost-equidistant set in \mathbb{R}^d has $O(d^{4/3})$ points.

Idea. Study the eigenvalues of the matrix

$$J_n - \|v_i - v_j\|^2 - I_n,$$

where J_n is the n-by-n matrix of ones and I_n is the identity matrix of size n.
The Perron-Frobenius Theorem implies also . . .

Theorem, P, 2019

An almost-equidistant set in \mathbb{R}^d of diameter 1 has at most $2d + 4$ points.
The Perron-Frobenius Theorem implies also . . .

Theorem, P, 2019

An almost-equidistant set in \mathbb{R}^d of diameter 1 has at most $2d + 4$ points.

Question

Prove that the size of an almost-equidistant set of diameter 1 is at most $\lfloor 3(d + 1)/2 \rfloor$.