Equipartitions and Mahler’s conjecture

M. Fradelizi, A. Hubard, M. Meyer, A. Zvavitch
Edgardo Roldán-Pensado

Discrete Geometry Days II

12 July 2019
Budapest
Let K be an O-symmetric convex body,

$$K^\circ = \{y : \langle x, y \rangle \leq 1, \forall x \in K\}.$$
Mahler’s conjecture

Let K be an O-symmetric convex body,

$$K^\circ = \{ y : \langle x, y \rangle \leq 1, \forall x \in K \}.$$
Mahler’s conjecture

Let K be an O-symmetric convex body,

\[
K^\circ = \{y : \langle x, y \rangle \leq 1, \forall x \in K\}.
\]
Mahler’s conjecture

Let K be an O-symmetric convex body,

$$K^\circ = \{y : \langle x, y \rangle \leq 1, \forall x \in K\}.$$
Mahler’s conjecture

Let K be an O-symmetric convex body,

$$K^\circ = \{ y : \langle x, y \rangle \leq 1, \forall x \in K \}.$$
Mahler’s conjecture

Let K be an O-symmetric convex body,

$$K^\circ = \{ y : \langle x, y \rangle \leq 1, \forall x \in K \}.$$
Mahler’s conjecture

Let K be an O-symmetric convex body,

$$K^\circ = \{y : \langle x, y \rangle \leq 1, \forall x \in K\}.$$
Mahler’s conjecture

Let K be an O-symmetric convex body,

$$K^\circ = \{y : \langle x, y \rangle \leq 1, \forall x \in K \}.$$

The Mahler volume is defined as

$$\mathcal{P}(K) = |K||K^\circ|.$$
Mahler’s conjecture

Let K be an O-symmetric convex body,

$$K^\circ = \{ y : \langle x, y \rangle \leq 1, \forall x \in K \}.$$

The Mahler volume is defined as

$$\mathcal{P}(K) = |K||K^\circ|.$$

The Blaschke-Santaló theorem states

$$\mathcal{P}(K) \leq \mathcal{P}(B_n^2).$$
Mahler’s conjecture

Let K be an O-symmetric convex body,

$$K^\circ = \{ y : \langle x, y \rangle \leq 1, \forall x \in K \}.$$

The Mahler volume is defined as

$$P(K) = |K||K^\circ|.$$

The Blaschke-Santaló theorem states

$$P(K) \leq P(B_{\infty}^n).$$

In 1939, Mahler conjectured (and proved for $n = 2$) that

$$P(K) \geq P(B_{\infty}^n).$$
A proof by Iriyeh and Shibata

In 2017, Iriyeh and Shibata came up with a proof for $n = 3$ and published it in a 67-page long paper.
In 2017, Iriyeh and Shibata came up with a proof for \(n = 3 \) and published it in a 67-page long paper.

Their proof passes through a ham-sandwich type result which is interesting on its own. The rest of the proof uses differential geometry and old ideas.
A proof by Iriyeh and Shibata

In 2017, Iriyeh and Shibata came up with a proof for $n = 3$ and published it in a 67-page long paper.

Their proof passes through a ham-sandwich type result which is interesting on its own. The rest of the proof uses differential geometry and old ideas.

I want to talk about the equipartition result. If K minimises the Mahler volume, then the partition, in some sense, tells you why K is similar to B_3^∞.
An equipartition result

Assume that K is a centrally symmetric convex body.
An equipartition result

Assume that K is a centrally symmetric convex body.

We want to partition it by three linear planes into 8 parts.
An equipartition result

Assume that K is a centrally symmetric convex body.

We want to partition it by three linear planes into 8 parts.
An equipartition result

Assume that K is a centrally symmetric convex body.

We want to partition it by three linear planes into 8 parts.

Each region should have the same volume.
An equipartition result

Assume that K is a centrally symmetric convex body.

We want to partition it by three linear planes into 8 parts.

Each region should have the same volume.

But we also want the areas of the sections to be split into 4 parts of equal areas.
An equipartition result

Assume that K is a centrally symmetric convex body.

We want to partition it by three linear planes into 8 parts.

Each region should have the same volume.

But we also want the areas of the sections to be split into 4 parts of equal areas.
An equipartition result

Assume that K is a centrally symmetric convex body.

We want to partition it by three linear planes into 8 parts.

Each region should have the same volume.

But we also want the areas of the sections to be split into 4 parts of equal areas.

By symmetry, we only need $3 + 1 + 1 + 1$ equalities.
Configuration Space
First take a vector $u \in S^2$ and let H_1 be the orthogonal plane.
Configuration Space

First take a vector $u \in S^2$ and let H_1 be the orthogonal plane.

Then take $v \perp u$ and draw v-symmetric lines l_2, l_3 that equipartition $H_1 \cap K$.
First take a vector \(u \in S^2 \) and let \(H_1 \) be the orthogonal plane.

Then take \(v \perp u \) and draw \(v \)-symmetric lines \(l_2, l_3 \) that equipartition \(H_1 \cap K \).
First take a vector $u \in S^2$ and let H_1 be the orthogonal plane.

Then take $v \perp u$ and draw v-symmetric lines l_2, l_3 that equipartition $H_1 \cap K$.

Extend l_i into a plane H_i that equipartitions $H_1^+ \cap K$.
First take a vector $u \in S^2$ and let H_1 be the orthogonal plane.

Then take $v \perp u$ and draw v-symmetric lines l_2, l_3 that equipartition $H_1 \cap K$.

Extend l_i into a plane H_i that equipartitions $H_1^+ \cap K$.
First take a vector $u \in S^2$ and let H_1 be the orthogonal plane.

Then take $v \perp u$ and draw v-symmetric lines l_2, l_3 that equipartition $H_1 \cap K$.

Extend l_i into a plane H_i that equipartitions $H_1^+ \cap K$.

This is almost a good partition.
Configuration Space

First take a vector $u \in S^2$ and let H_1 be the orthogonal plane.

Then take $v \perp u$ and draw v-symmetric lines l_2, l_3 that equipartition $H_1 \cap K$.

Extend l_i into a plane H_i that equipartitions $H_1^+ \cap K$.

This is almost a good partition.

There is a group acting here!
Test Map

\[H_2 \quad H_3 \]
$f(u, v) = (\begin{array}{ccc}
- & - \\
\end{array}, \begin{array}{ccc}
- & - \\
\end{array}, \begin{array}{ccc}
- & - \\
\end{array})$
We want zeros of f.

$$f(u, v) = (-, -, -)$$
We want zeros of f.

The group D_4 permutes the regions of the partition. On the right side it changes signs and permutes coordinates.
We want zeros of f.

The group D_4 permutes the regions of the partition. On the right side it changes signs and permutes coordinates.

\[
\begin{align*}
\mathbf{f}(u, v) &= (\begin{bmatrix} -x \\ -y \\ -z \end{bmatrix}, \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \begin{bmatrix} -x \\ -y \\ -z \end{bmatrix})
\end{align*}
\]
A special polynomial

Let $f_0(u, v, w) = (u_x, v_y, w_y, w_x + v_x, w_x - v_x)$.
A special polynomial

Let \(f_0(u, v, w) = (u_x, v_y, w_y, w_x + v_x, w_x - v_x) \).

It is \(D_4 \)-equivariant and has the orbit of \((e_1, e_2, e_3)\) as its set of zeros.
A special polynomial

Let \(f_0(u, v, w) = (u_x, v_y, w_y, w_x + v_x, w_x - v_x) \).

It is \(D_4 \)-equivariant and has the orbit of \((e_1, e_2, e_3)\) as its set of zeros.

The idea now is to move continuously from \(f_0 \) to \(f \).
A special polynomial

Let \(f_0(u, v, w) = (u_x, v_y, w_y, w_x + v_x, w_x - v_x) \).

It is \(D_4 \)-equivariant and has the orbit of \((e_1, e_2, e_3)\) as its set of zeros.

The idea now is to move continuously from \(f_0 \) to \(f \).

\[
\begin{align*}
Z(f_0) & \quad \bullet \quad Z(f) \\
\end{align*}
\]
A special polynomial

Let \(f_0(u, v, w) = (u_x, v_y, w_y, w_x + v_x, w_x - v_x) \).

It is \(D_4 \)-equivariant and has the orbit of \((e_1, e_2, e_3)\) as its set of zeros.

The idea now is to move continuously from \(f_0 \) to \(f \).
A special polynomial

Let $f_0(u, v, w) = (u_x, v_y, w_y, w_x + v_x, w_x - v_x)$.

It is D_4-equivariant and has the orbit of (e_1, e_2, e_3) as its set of zeros.

The idea now is to move continuously from f_0 to f.

If we are lucky, the zero-set of the homotopy is a 1-manifold and can only have endpoints at the start and end.
A special polynomial

Let \(f_0(u, v, w) = (u_x, v_y, w_y, w_x + v_x, w_x - v_x) \).

It is \(D_4 \)-equivariant and has the orbit of \((e_1, e_2, e_3)\) as its set of zeros.

The idea now is to move continuously from \(f_0 \) to \(f \).

If we are lucky, the zero-set of the homotopy is a 1-manifold and can only have endpoints at the start and end.

At each moment, the homotopy is equivariant so the zero-set is a union of orbits.
A special polynomial

Let $f_0(u, v, w) = (u_x, v_y, w_y, w_x + v_x, w_x - v_x)$.

It is D_4-equivariant and has the orbit of (e_1, e_2, e_3) as its set of zeros.

The idea now is to move continuously from f_0 to f.

If we are lucky, the zero-set of the homotopy is a 1-manifold and can only have endpoints at the start and end.

At each moment, the homotopy is equivariant so the zero-set is a union of orbits.

Since the orbits are generated or destroyed in pairs, some zero must survive until the end.
A special polynomial

Let $f_0(u, v, w) = (u_x, v_y, w_y, w_x + v_x, w_x - v_x)$.

It is D_4-equivariant and has the orbit of (e_1, e_2, e_3) as its set of zeros.

The idea now is to move continuously from f_0 to f.

If we are lucky, the zero-set of the homotopy is a 1-manifold and can only have endpoints at the start and end.

At each moment, the homotopy is equivariant so the zero-set is a union of orbits.

Since the orbits are generated or destroyed in pairs, some zero must survive until the end.
About the rest...

\[|K| \cdot |K^\circ| = |K| \cdot \sum K \]
About the rest...

\[|K| \cdot |K^\circ| = |K| \cdot \sum \hat{\gamma} \]
\[= 8 \sum \hat{\gamma} \cdot \hat{\gamma} \]
About the rest...

\[|K| \cdot |K| = |K| \cdot \sum \triangledown \]

\[= 8 \sum \triangledown \cdot \triangledown \]

Using polarity, a clever Stokes’ argument and ignoring constants...

\[\geq \sum \triangledown \cdot \triangledown \]
About the rest...

\[|K| \cdot |K^\circ| = |K| \cdot \sum \bigcirc \bigcirc \]

\[= 8 \sum \bigcirc \bigcirc \]

Using polarity, a clever Stokes’ argument and ignoring constants...

\[\geq \sum \bigcirc \bigcirc \]

There are some magic cancelations...

\[= \sum \bigcirc \bigcirc \]
About the rest...

\[|K| \cdot |K^\circ| = |K| \cdot \sum \bigcirc \bigcirc \]

\[= 8 \sum \bigcirc \bigcirc \bigcirc \bigcirc \]

Using polarity, a clever Stokes’ argument and ignoring constants...

\[\geq \sum \bigcirc \bigcirc \bigcirc \bigcirc \]

There are some magic cancelations...

\[= \sum \bigcirc \bigcirc \bigcirc \bigcirc \geq \sum \text{planar case} = \frac{32}{3} \cdot \square \]
¡Thank you!