Almost regular triangles

Irle Bárány and Zoltan Füredi

Triangles T and T' with angles x, y, γ and x', y', γ' are ε-similar if

$$|x-x'|, |y-y'|, |\gamma-\gamma'| < \varepsilon$$

ε is small, smaller than α, β, γ...
Def \(h(n, T, \varepsilon) = \) maximal number of \(\varepsilon \)-similar (to \(T \)) triangles in an \(n \)-element planar set

Determine \(h(n, T, \varepsilon) \)

FACT. \(h(n, T, \varepsilon) \geq \frac{n^3 - n}{24} \) for \(n \geq 3 \)
with \(f(n) = h(n, T, r) \)

\[
f(a+b+c) \geq abc + f(a) + f(b) + f(c)
\]

define \(h(n) \), \(n = 0, 1, 2, \ldots \) as the maximal lower bound:

\[
h(n) = \max \{ abc + h(a) + h(b) + h(c) : a + b + c = n \}
\]

\(a, b, c \geq 0 \) in integers \(h(0) = h(1) = h(2) = 0 \)

\(h(3) = 1 \)

Induction shows that

\[
\frac{h^3}{24} - O(h \log h) < h(n) \leq \frac{h^3 - h}{24}
\]

with equality on RHS if \(n = 3^k \).
\[
\begin{align*}
 h(n) &\leq \max \left\{ abc + \frac{a^3-a}{24} + \frac{b^3-b}{24} + \frac{c^3-c}{24} : \right. \\
 &\left. \quad a+b+c = n, \quad a, b, c \geq 0 \right\} \\
 &= \frac{n^3-n}{24} + \max \left\{ \frac{3}{4} \left(abc - \frac{a^3b+ab^3+b^3c+bc^3+c^3a+ac^3}{6} \right) : \right. \\
 &\left. \quad a+b+c = n, \quad a, b, c \geq 0 \right\} \\
 &\leq \frac{n^3-n}{24}.
\end{align*}
\]
Theorem 1. For the regular triangle $T \exists \varepsilon_0 > 1^\circ$ such that for all $\varepsilon \in (0, \varepsilon_0)$ and for all n:

$$h(n, T, \varepsilon) = h(n)$$

When n is a power of 3, then $h(n, T, \varepsilon) = \frac{h^3 - n}{24}$.

Theorem 2. Let T be a triangle whose angles are between $60^\circ - \frac{\varepsilon_0}{2}$ and $60^\circ + \frac{\varepsilon_0}{2}$. If $\varepsilon \in (0, \frac{\varepsilon_0}{2})$, then

$$h(n, T, \varepsilon) = h(n)$$
Proof of Thm 1 is technical:

1. Choose a well-behaved maximizer P_n^*

2. $xy \in P_n$ is a diameter of P_n

3. $z \in P_n$ and xyz is almost regular

show that

$P_n \subset N(x) \cup N(y) \cup N(z)$

show that

there is no almost regular triangle in P_n with

2 vertices in $N(x)$ and one in $N(y)$ or $N(z)$
Define \(h(T, \varepsilon) = \lim_{n \to \infty} \frac{h(n, T, \varepsilon)}{h^3} \).

Thm 3. This limit exists and is at least \(\frac{1}{24} \).

Further

\[h(T, \varepsilon) (h^3 - n) \geq h(n, T, \varepsilon) \geq h(T, \varepsilon) \eta(n-1)(n-2) \]

follows from

\[\frac{h(n, T, \varepsilon)}{\binom{n}{3}} \geq \frac{h(n+1, T, \varepsilon)}{\binom{n+1}{3}} \]
Is \(h(T, \varepsilon) = \frac{1}{2^4} \) always?

Constructions. \(Q = \{ q_1, q_2, \ldots, q_3 \} \subset \mathbb{R}^2 \), \(T \) a triangle \(F(Q, T, \varepsilon) \) 3-uniform hypergraph with vertex set \(\{ v_1, \ldots, v_3 \} \) and \(ijk \) an edge of \(F \) is \(q_i, q_j, q_k \) is \(\varepsilon \)-similar to \(T \). \(P_i \subset \mathbb{R}^2 \), \(|P_i| = y_i \) (4)

Then \(\exists s = s(Q, T, \varepsilon) > 0 \) such that:
\(\mathcal{F} = \{ \text{four blue triangles} \} \)

\(D_1, \ldots, D_r \) disks of radius \(g \)

Then every triangle \(\triangle p_ip_jp_k \) with \(p_i \in D_i, p_j \in D_j, p_k \in D_k \) is similar to \(T \) if \(ijk \in \mathcal{F} \) but all other triangles are not except possibly when \(i = j = k \).

\(h = 1 |P| = \sum y_i \).

Put a homothetic copy of \(P_i \) into \(D_i \) to get \(P \subset \mathbb{R}^2 \).
\[h(P, T, \varepsilon) = \sum_{i=1}^{r} h(P_i, T, \varepsilon) + \sum_{ijk \in \mathcal{F}} y_i y_j y_k \]

\hspace{1cm} p(y_1, \ldots, y_r) \text{ polynomial} \]

Using \((T, \varepsilon)\)-optimal \(P_i: h(P_i, T, \varepsilon) = h(y_i, T, \varepsilon)\) gives

\[h(h, T, \varepsilon) \geq \sum_{i} h(y_i, T, \varepsilon) + p(y_1, \ldots, y_r) \]

We have \(n \) fixed (and \(T, \varepsilon, \mathcal{G} \)) how to choose \(y_i \)?
Define
\[y_i = n \sum x_i \alpha (n x_i) \quad \text{s.t.} \quad \sum y_i = n \]

Given \(P_n \) (not unique) but

Lemma \(\forall T \exists \varepsilon(T) > 0 \quad \forall \varepsilon \in (0, \varepsilon(T)) \)

\[
\left| h(P_n, T \varepsilon) - n^2 \frac{p(x_1, \ldots, x_r)}{1 - (x_1^3 + \ldots + x_r^3)} \right| \leq \frac{r}{1 - \max x_i} \cdot n^2
\]

Remark \(x_i > 0 \) \((\forall i) \) \(\Rightarrow \) \(\max x_i < 1 \).
We want to minimize

\[
p(x_1, \ldots, x_r) \frac{1 - (x_1^3 + \ldots + x_r^3)}{1 - (x_1 + \ldots + x_r)}
\]

subject to \(x_1 + \ldots + x_r = 1 \), \(x_i > 0 \) (for i)
Example 0: \(r = 3 \) \(\mathcal{F} = \{1, 2, 3\} \)

\[
x_i = \frac{1}{3}
\]

gives

\[
h(n, T, \varepsilon) \geq \frac{n^3}{2^4} + O(n^2)
\]

Example 1. \(r = 4 \)

\(\mathcal{F} = \text{all 4 triples} \)

\[
x_i = \frac{1}{4}
\]

\[
h(n, T, \varepsilon) \geq \frac{n^3}{1^5} + O(n^2)
\]
Example 3. \(r = 5 \) \(F = \{8 \text{ triples}\} \)

\[
x_1 = x_2 = x_3 = x_4 = x, \quad x_5 = 1 - 4x
\]

\[
f(x) = \frac{x - 3x^2}{3(1 - 4x + 5x^2)} - \epsilon(x) \in (0, \frac{1}{4})
\]

\[
\max \text{ at } x = \frac{3 - \sqrt{2}}{7} \quad \text{when} \quad f(x) = \frac{1}{6 \sqrt{2} + 6} = \frac{1}{14.4852...}
\]

\[
h_n(n, t, \epsilon) \geq \frac{n^3}{14.4852...} + O(n^2)
\]

overall max?
Example 4. \(r = 4 \) \(F = \{3 \text{ triples}\} \)

\(x_1 = x_2 = x_3 = x_4 = 1 - 3x \), \(x \in (0, \frac{1}{3}) \)

\(h(n, T, \varepsilon) \geq \frac{h^3}{18.797...} + O(n^2) \)

Example 5. \(r = 4 \) \(F = \{124, 239, 341\}\)

\(\alpha = 40.2^\circ \), \(T = (\alpha, 2\alpha, 180^\circ - 3\alpha) \)

\((\min 3\alpha)^3 = \min \alpha (\min 2\alpha)^2 \)

\(p(x_1, x_2, x_3, x_4) \) same as in Example 4.

So \(h(n, T, \varepsilon) \) is the same.
Example 6. \(r = 6 \), \(T = (30^\circ, 60^\circ, 90^\circ) \)

\[F = \{ 12 \text{ triples} \} \quad x_i = \frac{1}{6} \]

\[h(n, T, \varepsilon) \geq \frac{n^3}{17.5} + O(n^2) \]

Example 7. \(r = 5 \) \(T = (36^\circ, 36^\circ, 108^\circ) \)

\[F = \{ 35 \text{ triples} \} \quad x_i = \frac{1}{5} \]

\[h(n, T, \varepsilon) \geq \frac{n^3}{24} + O(n^2) \]
Example 8. Same as No previous Example just \(T - (36^\circ, 72^\circ, 72^\circ) \)

In both cases, \(\varphi(p_n, T, \varepsilon) = \frac{n^3 - n}{24} \)

if \(n \) is a power of 5.

Example 9. \(v = 7 \), \(G \) regular \(7 \)-gon

\(F = \{ 14 \text{ triples} \} \) ... \(\varphi(p_n, T, \varepsilon) \geq \frac{n^3}{24} - O(n^2) \)

and \(\varphi(p_n, T, \varepsilon) = \frac{n^3 - n}{24} \) if \(n \) is a power of 7.
Example 10. \(r = 5 \), \(\mathcal{F} = \{ 01z, 01 \frac{1}{1-z}, 01 \frac{2-z}{z}, z \} \) \(\frac{1}{1-z} \frac{2-z}{z} \)

\[x = \left(\frac{1}{5}, \frac{1}{5}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9} \right) \]

\[h(h, T, \varepsilon) \geq \frac{h^3}{24} + O(h^2) \]

Fact \(z = \frac{1}{1-z} \frac{2-z}{z} \) is similar to \(01z \)
Is $h(T(\varepsilon)) = \frac{1}{24}$ almost always?

Space of triangle shapes:

$(x, y, z) \in \mathbb{R}^3 \quad x + y + z = 1$

$x, y, z > 0$
There are few examples with $h(T_{12}) > \frac{1}{24}$:

\[\frac{1}{14.48} = \frac{1}{24} \]

\[\frac{1}{18.78} \]

\[\frac{1}{3.61} \]

\[\frac{1}{15} \]

\[\frac{2\pi}{3} \]

\[\frac{\pi}{6} \]

\[\frac{\pi}{4} \]

\[\frac{\pi}{3} \]

\[\frac{\pi}{2} \]

\[\alpha = \frac{\pi}{2} \]
Thm 4. For almost every triangle T

$\exists \epsilon = \epsilon(T) > 0$ such that

$h(u, T, \varepsilon) \leq 0.25108 \left(\frac{h}{3} \right) (1 + o(1))$

$\approx \left(\frac{1}{24} + 0.00018 \right) h^3$

Can improve to 0.25072
Proof uses Turán's theory of extremal hypergraphs and computers (flag algebra computations).

L - a finite family of 3-uniform hypergraphs

"forbidden hypergraphs"

Determine the maximal number of edges of a 3-uniform hypergraph H on n vertices if it does not contain any member of L, $\text{ex}(n, L)$
\[\mathcal{K}_4^{-} = \{124, 134, 234\} \quad \mathcal{C}_5 = \{123, 234, 345, 451, 512\} \]

\[\mathcal{L} = \{ \mathcal{K}_4^{-}, \mathcal{C}_5 \} \]

Thus (Falgas-Ravry and Vaughan, 2013)

\[(0.25 + o(1))(\binom{n}{3}) \leq \text{ex}(n, \mathcal{L}) \leq 0.25108(\binom{n}{3}) \]

Conjecture: \[\text{ex}(n, \mathcal{L}) = (\frac{1}{4} + o(1))(\binom{n}{3}) \]
Given a triangle T with angles α, β, γ (in radians) an equation

$$n_1 \alpha + n_2 \beta + n_3 \gamma + n_4 \pi = 0$$

is a non-trivial equation for T if (n_1, n_2, n_3, n_4) is linearly independent of $(1, 1, 1, -1)$ and every n_i is an integer with $|n_i| \leq 5$.

Note that \(\alpha + \beta + \gamma - \pi = 0 \) for every triangle.
Given $Q \subset \mathbb{R}^2$, $|Q|=r$ and T, define $F(Q,T)$ as the 3-uniform hypergraph on vertex set Q with $x,y,z \in Q$ forming an edge if triangle xyz is similar to T.
Lemma 1. $|Q|=4$ and $F(Q,T)$ contains a copy of K_4. Then the angles of T satisfy a non-trivial equation.

Lemma 2. $|Q|=5$ and $F(Q,T)$ contains a copy of C_5. Then the angles of T satisfy a non-trivial equation.
Thanks!