Around Radon’s number

Zuzana Patáková

Charles University & IST Austria

Discrete Geometry Days
July 11, 2019
Theorem (Radon, 1921)

Any set of $d + 2$ points in \mathbb{R}^d can be partitioned into two disjoint sets whose convex hulls intersect.
Convex hull relative to a set system

- $\mathcal{F} = \{F_1, \ldots, F_n\}$ subsets of a ground set X
- $S \subseteq X$, $\text{conv}_\mathcal{F}(S) = \bigcap\{F_i \in \mathcal{F} : S \subseteq F_i\}$
- If $S \not\subseteq F_i$ for any i, $\text{conv}_\mathcal{F}(S) = X$
Convex hull relative to a set system

- \(\mathcal{F} = \{F_1, \ldots, F_n\} \) subsets of a ground set \(X \)
- \(S \subseteq X, \quad \text{conv}_\mathcal{F}(S) = \bigcap\{F_i \in \mathcal{F} : S \subseteq F_i\} \)
- If \(S \not\subseteq F_i \) for any \(i \), \(\text{conv}_\mathcal{F}(S) = X \)
• $\mathcal{F} = \{F_1, \ldots, F_n\}$ subsets of a ground set X

• $S \subseteq X$, $\mathrm{conv}_\mathcal{F}(S) = \bigcap\{F_i \in \mathcal{F}: S \subseteq F_i\}$

• If $S \not\subseteq F_i$ for any i, $\mathrm{conv}_\mathcal{F}(S) = X$
Convex hull relative to a set system

- $\mathcal{F} = \{F_1, \ldots, F_n\}$ subsets of a ground set X
- $S \subseteq X$, $\text{conv}_\mathcal{F}(S) = \bigcap\{F_i \in \mathcal{F}: S \subseteq F_i\}$
- If $S \not\subseteq F_i$ for any i, $\text{conv}_\mathcal{F}(S) = X$
Convex hull relative to a set system

- \(\mathcal{F} = \{ F_1, \ldots, F_n \} \) subsets of a ground set \(X \)
- \(S \subseteq X, \quad \text{conv}_\mathcal{F}(S) = \bigcap\{ F_i \in \mathcal{F} : S \subseteq F_i \} \)
- If \(S \not\subseteq F_i \) for any \(i \), \(\text{conv}_\mathcal{F}(S) = X \)
Convex hull relative to a set system

- $\mathcal{F} = \{F_1, \ldots, F_n\}$ subsets of a ground set X
- $S \subseteq X$, $\text{conv}_\mathcal{F}(S) = \bigcap\{F_i \in \mathcal{F} : S \subseteq F_i\}$
- If $S \not\subseteq F_i$ for any i, $\text{conv}_\mathcal{F}(S) = X$
Convex hull relative to a set system

- $\mathcal{F} = \{F_1, \ldots, F_n\}$ subsets of a ground set X
- $S \subseteq X$, $\text{conv}_\mathcal{F}(S) = \bigcap\{F_i \in \mathcal{F}: S \subseteq F_i\}$
- If $S \not\subseteq F_i$ for any i, $\text{conv}_\mathcal{F}(S) = X$
Convex hull relative to a set system

- $\mathcal{F} = \{F_1, \ldots, F_n\}$ subsets of a ground set X
- $S \subseteq X$, \quad \text{conv}_\mathcal{F}(S) = \bigcap\{F_i \in \mathcal{F}: S \subseteq F_i\}$
- If $S \not\subseteq F_i$ for any i, \text{conv}_\mathcal{F}(S) = X$
Convex hull relative to a set system

- \(\mathcal{F} = \{F_1, \ldots, F_n\} \) subsets of a ground set \(X \)
- \(S \subseteq X \), \(\text{conv}_{\mathcal{F}}(S) = \bigcap\{F_i \in \mathcal{F} : S \subseteq F_i\} \)
- If \(S \not\subseteq F_i \) for any \(i \), \(\text{conv}_{\mathcal{F}}(S) = X \)

\[
\begin{align*}
F_1 & \subseteq X \\
F_2 & \subseteq X \\
F_3 & \subseteq X \\
S & \subseteq X \\
X & = \mathbb{R}^d
\end{align*}
\]

\(\mathcal{F} = \) convex sets
Convex hull relative to a set system

- \(\mathcal{F} = \{F_1, \ldots, F_n\} \) subsets of a ground set \(X \)
- \(S \subseteq X \), \(\text{conv}_{\mathcal{F}}(S) = \bigcap \{F_i \in \mathcal{F} : S \subseteq F_i\} \)
- If \(S \not\subseteq F_i \) for any \(i \), \(\text{conv}_{\mathcal{F}}(S) = X \)

\(X = \mathbb{R}^d \)

\(\mathcal{F} = \) convex sets
Radon’s number $r(\mathcal{F})$ of a family \mathcal{F}
the smallest r s.t. any set $S \subseteq X$, $|S| = r$, can be split into two parts $S = P_1 \sqcup P_2$ satisfying $\text{conv}_{\mathcal{F}}(P_1) \cap \text{conv}_{\mathcal{F}}(P_2) \neq \emptyset$.
Radon’s number $r(\mathcal{F})$ of a family \mathcal{F}
the smallest r s.t. any set $S \subseteq X, |S| = r$, can be split into two parts $S = P_1 \sqcup P_2$ satisfying $\text{conv}_\mathcal{F}(P_1) \cap \text{conv}_\mathcal{F}(P_2) \neq \emptyset$.

- $r(\text{convex sets in } \mathbb{R}^d) \leq d + 2$
Radon’s number $r(\mathcal{F})$ of a family \mathcal{F}
the smallest r s.t. any set $S \subseteq X$, $|S| = r$, can be split into two parts $S = P_1 \sqcup P_2$ satisfying $\text{conv}_\mathcal{F}(P_1) \cap \text{conv}_\mathcal{F}(P_2) \neq \emptyset$.

• $r(\text{convex sets in } \mathbb{R}^d) \leq d + 2$
Radon’s number $r(\mathcal{F})$ of a family \mathcal{F}
the smallest r s.t. any set $S \subseteq X$, $|S| = r$, can be split into two parts $S = P_1 \sqcup P_2$ satisfying $\text{conv}_\mathcal{F}(P_1) \cap \text{conv}_\mathcal{F}(P_2) \neq \emptyset$.

- $r(\text{convex sets in } \mathbb{R}^d) \leq d + 2$
- $r(\mathcal{F}) = 2$ for the picture
Radon’s number $r(\mathcal{F})$ of a family \mathcal{F}
the smallest r s.t. any set $S \subseteq X$, $|S| = r$, can be split into two parts $S = P_1 \sqcup P_2$ satisfying $\text{conv}_\mathcal{F}(P_1) \cap \text{conv}_\mathcal{F}(P_2) \neq \emptyset$.

- $r(\text{convex sets in } \mathbb{R}^d) \leq d + 2$
- $r(\mathcal{F}) = 2$ for the picture

Radon’s number provides bounds for many other parameters of \mathcal{F} (more on that later)
Topological complexity

- \(\mathcal{F} \) set system in a topological space of dimension \(d \)
- \(k \in \mathbb{Z}_+ \cup \{ \infty \} \)

\(k \)-level topological complexity of \(\mathcal{F} \):

\[
TC_k(\mathcal{F}) = \sup\{ \tilde{\beta}_i(\bigcap G): G \subseteq \mathcal{F}, 0 \leq i < k \},
\]

where \(\tilde{\beta}_i \) – reduced Betti numbers with \(\mathbb{Z}_2 \)-coefficients
Topological complexity

- \mathcal{F} set system in a topological space of dimension d
- $k \in \mathbb{Z}_+ \cup \{\infty\}$

k-level topological complexity of \mathcal{F}:

$$TC_k(\mathcal{F}) = \sup\{\tilde{\beta}_i(\bigcap G): G \subseteq \mathcal{F}, 0 \leq i < k\},$$

where $\tilde{\beta}_i$ – reduced Betti numbers with \mathbb{Z}_2-coefficients

Families \mathcal{F} with bounded topological complexity $TC_\infty(\mathcal{F})$:

- convex sets in \mathbb{R}^d
- good covers
Topological complexity

- \mathcal{F} set system in a topological space of dimension d
- $k \in \mathbb{Z}_+ \cup \{\infty\}$

k-level topological complexity of \mathcal{F}:

$$TC_k(\mathcal{F}) = \sup\{\tilde{\beta}_i(\bigcap G): G \subseteq \mathcal{F}, 0 \leq i < k\},$$

where $\tilde{\beta}_i$ – reduced Betti numbers with \mathbb{Z}_2-coefficients

Families \mathcal{F} with bounded topological complexity $TC_\infty(\mathcal{F})$:
- convex sets in \mathbb{R}^d
- good covers
- hollow boxes
- spheres and pseudospheres
Topological complexity

- \mathcal{F} set system in a topological space of dimension d
- $k \in \mathbb{Z}_+ \cup \{\infty\}$

k-level topological complexity of \mathcal{F}:

$$TC_k(\mathcal{F}) = \sup\{\tilde{\beta}_i(\bigcap G): G \subseteq \mathcal{F}, 0 \leq i < k\},$$

where $\tilde{\beta}_i$ – reduced Betti numbers with \mathbb{Z}_2-coefficients

Families \mathcal{F} with bounded topological complexity $TC_{\infty}(\mathcal{F})$:

- convex sets in \mathbb{R}^d
- good covers
- hollow boxes
- spheres and pseudospheres
- finite families of semialgebraic sets in \mathbb{R}^d with bounded description complexity...
“Bounded top. complexity ⇒ bounded Radon’s number”

Theorem

For $b, d \geq 0$ there is a number $r(b, d)$ s.t. the following holds: If \mathcal{F} is a finite family of sets in \mathbb{R}^d with $TC_{\lceil d/2 \rceil}(\mathcal{F}) \leq b$, then $r(\mathcal{F}) \leq r(b, d)$.
Tverberg’s number $r_k(\mathcal{F})$
the smallest r_k, $k \geq 3$, s.t. any set $S \subseteq X$, $|S| = r_k$, can be split into k parts P_i with $\bigcap_{i=1}^{k} \text{conv}_{\mathcal{F}}(P_i) \neq \emptyset$.
$r_k(\mathcal{F}) = \infty$ if there is no such r_k.

- $r_k(\mathcal{F}) \leq r(\mathcal{F})^{\lceil \log_2 k \rceil}$

Jamison-Waldner ’76
Tverberg’s number $r_k(\mathcal{F})$
the smallest r_k, $k \geq 3$, s.t. any set $S \subseteq X$, $|S| = r_k$, can be split into k parts P_i with $\bigcap_{i=1}^{k} \text{conv}_\mathcal{F}(P_i) \neq \emptyset$.
$r_k(\mathcal{F}) = \infty$ if there is no such r_k.

- $r_k(\mathcal{F}) \leq r(\mathcal{F})^\lceil \log_2 k \rceil$ Jamison-Waldner '76

Helly’s number $h(\mathcal{F})$
the smallest h s.t. if in a finite subfamily $S \subseteq \mathcal{F}$ each h members of S have a point in common $\Rightarrow \bigcap S \neq \emptyset$.
$h(\mathcal{F}) = \infty$ if no such h exists.

- $h(\mathcal{F}) + 1 \leq r(\mathcal{F})$ Levi '51
Direct consequences – Part II

Bounded $\mathcal{TC}_{\lceil d/2 \rceil}(\mathcal{F}) \Rightarrow$ bounded Radon’s number

\Rightarrow bounded Helly number [Goaoc, Paták, P, Tancer, Wagner ’15]
Bounded $\sum_{d/2}^{\leq d/2} \Rightarrow$ bounded Radon’s number

\Rightarrow bounded Helly number [Goaoc, Patáček, P, Tancer, Wagner ’15]

Holmsen, Lee ’19:
bounded Radon’s number \Rightarrow bounded fractional Helly’s number
\Rightarrow bounded colorful Helly’s number
Carathéodory’s number $c(F)$
the smallest c s.t.: For any set S and any point $x \in \text{conv}_F(S)$, there is a subset $S' \subseteq S$, $|S'| \leq c$, and $x \in \text{conv}_F(S')$.
$c(F) = \infty$ if no such c exists.
Carathéodory’s number $c(\mathcal{F})$
the smallest c s.t.: For any set S and any point $x \in \text{conv}_\mathcal{F}(S)$, there is a subset $S' \subseteq S$, $|S'| \leq c$, and $x \in \text{conv}_\mathcal{F}(S')$.
$c(\mathcal{F}) = \infty$ if no such c exists.

Bounded top. complexity \nRightarrow bounded Car. number
Carathéodory’s number $c(\mathcal{F})$
the smallest c s.t.: For any set S and any point $x \in \text{conv}_\mathcal{F}(S)$, there is a subset $S' \subseteq S$, $|S'| \leq c$, and $x \in \text{conv}_\mathcal{F}(S')$.
$c(\mathcal{F}) = \infty$ if no such c exists.

Bounded top. complexity \nRightarrow bounded Car. number

Theorem
For any $c \geq 2$, $d \geq 2$ there is a finite family \mathcal{F} of sets in \mathbb{R}^d with $TC_\infty(\mathcal{F}) = 0$ and $c(\mathcal{F}) = c$.

![Diagram showing a set of points and subsets](image)
fractional Helly in the plane

$m_i(G) =$ number of intersecting i-tuples in G

Theorem

Fix $b \geq 0$. $\forall \alpha \in (0, 1) \quad \exists \beta = \beta(\alpha, b) > 0$ s.t.:

- If F is a family of open sets in \mathbb{R}^2 with $TC_1(F) \leq b$, and
- G is a finite subfamily of F-convex sets with $m_3(G) \geq \alpha(|G|)$

\Rightarrow there is a point in common to at least $\beta|G|$ sets of G.

- S is F-convex if $\text{conv}_F(S) = S$
- holds also for compact connected surfaces
A variant of fractional Helly in the plane

\(m_i \) = number of intersecting \(i \)-tuples

Theorem (Kalai, P ’19)

Let \(b \geq 0, \ell \geq 3 \) and let \(F \subseteq \mathbb{R}^2 \) be a family of open sets s.t.

- \(m_{\ell+1} = 0 \)
- intersection of any \((\ell - 1)\)-tuple or any \(\ell \)-tuple of sets has \(\leq (b + 1) \) path-connected components

\(\Rightarrow m_\ell \leq cm_{\ell-1} \) for some \(c = c(b, \ell) \).

In particular, \(m_\ell \leq c\binom{n}{\ell-1} \).

Note: holds also for compact connected surfaces
Lemma

- \(\ell \geq 4, b \geq 0 \) fixed parameters
- \(F \) a family of \(n \) open sets in \(\mathbb{R}^2 \) with \(TC_1(F) \leq b \)
- then \(\forall \alpha \in (0, 1) \; \exists \beta = \beta(\alpha, b, \ell) > 0 \) such that

\[
m_3 \geq \alpha \left(\frac{n}{3} \right) \Rightarrow m_\ell \geq \beta \left(\frac{n}{\ell} \right)
\]
Lemma

• $\ell \geq 4$, $b \geq 0$ fixed parameters
• \mathcal{F} a family of n open sets in \mathbb{R}^2 with $TC_1(\mathcal{F}) \leq b$
• then $\forall \alpha \in (0, 1)$ $\exists \beta = \beta(\alpha, b, \ell) > 0$ such that

\[m_3 \geq \alpha \left(\frac{n}{3} \right) \Rightarrow m_\ell \geq \beta \left(\frac{n}{\ell} \right) \]

Remarks:

• combined with the result of Holmsen and Lee

\Rightarrow fract. Helly number is 3 in \mathbb{R}^2

• Lemma & fract. Helly hold also for connected surfaces
\(\mathcal{F} \) has \((p, q)\)-property if among every \(p \) sets of \(\mathcal{F} \), some \(q \) have a point in common

Theorem

\(\forall p \geq q \geq 3, b \geq 0 \) and a surface \(S \), \(\exists C = C(p, q, \chi(S)) \) s.t.:

- \(\mathcal{F} \) a finite family of open subsets of \(S \) with \(TC_1(\mathcal{F}) \leq b \)

\(\mathcal{F} \) has the \((p, q)\)-property \(\Rightarrow \) \(\mathcal{F} \) can be pierced by \(\leq C \) elements.
\(\mathcal{F} \) has \((p, q)\)-property if among every \(p \) sets of \(\mathcal{F} \), some \(q \) have a point in common.

Theorem

\[\forall p \geq q \geq 3, \ b \geq 0 \text{ and a surface } S, \ \exists C = C(p, q, \chi(S)) \text{ s.t.:} \]

- \(\mathcal{F} \) a finite family of open subsets of \(S \) with \(TC_1(\mathcal{F}) \leq b \)

\(\mathcal{F} \) has the \((p, q)\)-property \(\Rightarrow \) \(\mathcal{F} \) can be pierced by \(\leq C \) elements.

Note: \(b = 0 \) settles a conjecture by Holmsen, Kim, and Lee!
Bounded $TC_{\lceil d/2 \rceil}(\mathcal{F}) \Rightarrow$ bounded Radon’s number

Radon’s number $r(\mathcal{F})$ (reminder)
is the smallest r s.t. $\forall S \subseteq X, |S| = r, \exists P_1, P_2 \subseteq S: S = P_1 \sqcup P_2$ and $\text{conv}_\mathcal{F}(P_1) \cap \text{conv}_\mathcal{F}(P_2) \neq \emptyset$.

Proof idea for a point set $S \subseteq \mathbb{R}^2$:
Bounded $TC_{d/2}(\mathcal{F}) \Rightarrow$ bounded Radon’s number

Radon’s number $r(\mathcal{F})$ *(reminder)*

is the smallest r s.t. $\forall S \subseteq X$, $|S| = r$, $\exists P_1, P_2 \subseteq S$: $S = P_1 \sqcup P_2$

and $\text{conv}_\mathcal{F}(P_1) \cap \text{conv}_\mathcal{F}(P_2) \neq \emptyset$.

Proof idea for a point set $S \subseteq \mathbb{R}^2$:

We want Two disjoint subsets $P_1, P_2 \subseteq S$ whose convex hulls intersect
Bounded $\text{TC}_{d/2}(\mathcal{F}) \Rightarrow$ bounded Radon’s number

Radon’s number $r(\mathcal{F})$ *(reminder)*

is the smallest r s.t. \(\forall S \subseteq X, \ |S| = r, \ \exists P_1, P_2 \subseteq S: \ S = P_1 \sqcup P_2 \) and \(\text{conv}_\mathcal{F}(P_1) \cap \text{conv}_\mathcal{F}(P_2) \neq \emptyset \).

Proof idea for a point set $S \subseteq \mathbb{R}^2$:

- **We want** Two disjoint subsets $P_1, P_2 \subseteq S$ whose convex hulls intersect
- **We know** In every drawing of K_5 two disjoint edges intersect (Hanani-Tutte)
Bounded $TC_{[d/2]}(\mathcal{F}) \Rightarrow$ bounded Radon’s number

Radon’s number $r(\mathcal{F})$ (reminder)
is the smallest r s.t. $\forall S \subseteq X$, $|S| = r$, $\exists P_1, P_2 \subseteq S$: $S = P_1 \sqcup P_2$
and $\text{conv}_\mathcal{F}(P_1) \cap \text{conv}_\mathcal{F}(P_2) \neq \emptyset$.

Proof idea for a point set $S \subseteq \mathbb{R}^2$:

- **We want** Two disjoint subsets $P_1, P_2 \subseteq S$ whose convex hulls intersect
- **We know** In every drawing of K_5 two disjoint edges intersect (Hanani-Tutte)
- **Idea** Draw each point/edge of K_5 inside $\text{conv}_\mathcal{F}(Q)$ for a suitable set Q
Bounded $\text{TC}_{d/2}(\mathcal{F}) \Rightarrow$ bounded Radon’s number

Radon’s number $r(\mathcal{F})$ (reminder)
is the smallest r s.t. $\forall S \subseteq X, |S| = r$, $\exists P_1, P_2 \subseteq S$: $S = P_1 \sqcup P_2$
and $\text{conv}_{\mathcal{F}}(P_1) \cap \text{conv}_{\mathcal{F}}(P_2) \neq \emptyset$.

Proof idea for a point set $S \subseteq \mathbb{R}^2$:

We want Two disjoint subsets $P_1, P_2 \subseteq S$ whose convex hulls intersect

We know In every drawing of K_5 two disjoint edges intersect (Hanani-Tutte)

Idea Draw each point/edge of K_5 inside $\text{conv}_{\mathcal{F}}(Q)$ for a suitable set Q

Require Disjoint edges \Rightarrow disjoint sets Q
Definition (Constraint map)
A drawing φ of K_5 into \mathbb{R}^2 is constraint by (S, F), if there is $\Psi : E(K_5) \cup V(K_5) \cup \{\emptyset\} \rightarrow 2^S$ satisfying

- $\Psi(\emptyset) = \emptyset$
- $\Psi(\sigma \cap \tau) = \Psi(\sigma) \cap \Psi(\tau)$
- $\varphi(x) \subseteq \text{conv}_F \Psi(x)$ for each $x \in E(K_5) \cup V(K_5)$.
Path-connected intersections in \mathbb{R}^2 ($b = 0$, $d = 2$)

- Let $S = \{p_1, p_2, \ldots, p_5\}$
- Map ith vertex v_i of K_5 to p_i and set $\Psi(v_i) := \{p_i\}$
- $b = 0$, so for every $i \neq j$, $\text{conv}_{\mathbb{F}}\{p_i, p_j\}$ is connected
Path-connected intersections in $\mathbb{R}^2 (b = 0, d = 2)$

- Let $S = \{p_1, p_2, \ldots, p_5\}$
- Map ith vertex v_i of K_5 to p_i and set $\Psi(v_i) := \{p_i\}$
- $b = 0$, so for every $i \neq j$, $\text{conv} \mathcal{F}\{p_i, p_j\}$ is connected
 \Rightarrow it suffices to set $\Psi(v_i, v_j) := \{p_i, p_j\}$

We have just proved that $r(F) \leq 5$, which is sharp.
Path-connected intersections in \mathbb{R}^2 ($b = 0$, $d = 2$)

- Let $S = \{p_1, p_2, \ldots, p_5\}$
- Map ith vertex v_i of K_5 to p_i and set $\Psi(v_i) := \{p_i\}$
- $b = 0$, so for every $i \neq j$, $\text{conv}_F\{p_i, p_j\}$ is connected
 \Rightarrow it suffices to set $\Psi(v_i, v_j) := \{p_i, p_j\}$

We have just proved that $r(F) \leq 5$, which is sharp.
Case $b = 1$:

- among any three distinct points p_i, p_j, p_k, some two can be connected inside $\text{conv}_F\{p_i, p_j, p_k\}$

- color each triple by the “position” of the connected pair
Case $b = 1$:

- among any **three distinct** points p_i, p_j, p_k, **some two** can be connected inside $\text{conv}_F\{p_i, p_j, p_k\}$
- color each triple by the "position" of the connected pair

Ramsey: for $|S| \geq R_3(15; 3) \exists$ a monochr. set Z of 15 pts
Case $b = 1$:

- among any three distinct points p_i, p_j, p_k, some two can be connected inside $\text{conv}_F\{p_i, p_j, p_k\}$
- color each triple by the “position” of the connected pair

Ramsey: for $|S| \geq R_3(15; 3)$ \exists a monochr. set Z of 15 pts

- find $\Psi : \{\emptyset\} \cup V(K_5) \cup E(K_5) \rightarrow 2^Z$ that
 - vertex $v_i \mapsto$ point $p_i \in Z$
 - edge $v_i v_j \mapsto$ 3-element set $\Psi(v_i v_j)$ s.t. p_i, p_j are connected inside $\text{conv}_F\Psi(v_i v_j)$ and $\Psi(v_i v_j)$ are disjoint for disjoint edges.
Raising b in \mathbb{R}^2

Case $b = 1$:

- among any three distinct points p_i, p_j, p_k, some two can be connected inside $\text{conv}_F\{p_i, p_j, p_k\}$

- color each triple by the “position” of the connected pair

Ramsey: for $|S| \geq R_3(15; 3)$ \exists a monochr. set Z of 15 pts

- find $\Psi : \emptyset \cup V(K_5) \cup E(K_5) \to 2^Z$ that

 - vertex $v_i \mapsto$ point $p_i \in Z$
 - edge $v_i v_j \mapsto$ 3-element set $\Psi(v_i v_j)$ s.t. p_i, p_j are **connected** inside $\text{conv}_F\Psi(v_i v_j)$ and $\Psi(v_i v_j)$ are **disjoint** for disjoint edges.

- conclude $r(F) \leq R_3(15; 3)$
Case $b = 1$:

- among any three distinct points p_i, p_j, p_k, some two can be connected inside $\text{conv}_\mathcal{F}\{p_i, p_j, p_k\}$
- color each triple by the "position" of the connected pair

Ramsey: for $|S| \geq R_3(15; 3)$ \exists a monochr. set Z of 15 pts

- find $\Psi : \{\emptyset\} \cup V(K_5) \cup E(K_5) \to 2^Z$ that
 - vertex $v_i \mapsto$ point $p_i \in Z$
 - edge $v_i v_j \mapsto$ 3-element set $\Psi(v_i v_j)$ s.t. p_i, p_j are **connected**
 inside $\text{conv}_\mathcal{F} \Psi(v_i v_j)$ and $\Psi(v_i v_j)$ are **disjoint** for disjoint edges.

- conclude $r(\mathcal{F}) \leq R_3(15; 3)$

For $b \geq 2$, $r(\mathcal{F}) \leq R_{b+2} \left(5 + 10b; \left\lceil \frac{b+2}{2} \right\rceil \right)$.
For $d \geq 3$ we proceed as follows:

- induction
- being in the same component \leadsto (subdivided) cycle with trivial homology
For $d \geq 3$ we proceed as follows:

- induction
- being in the same component \rightsquigarrow (subdivided) cycle with trivial homology
- maps \rightsquigarrow chain maps
For $d \geq 3$ we proceed as follows:

- induction
- being in the same component \rightsquigarrow (subdivided) cycle with trivial homology
- maps \rightsquigarrow chain maps
- $K_5 \rightsquigarrow \lceil d/2 \rceil$-skeleton of $(d+2)$-simplex

[chain map generalization of Van-Kampen Flores thm]
For $d \geq 3$ we proceed as follows:

- induction
- being in the same component \leadsto (subdivided) cycle with trivial homology
- maps \leadsto chain maps
- $K_5 \leadsto \lceil d/2 \rceil$-skeleton of $(d + 2)$-simplex

[chain map generalization of Van-Kampen Flores thm]

Thanks for your time!